Synthesis of ZnMn2O4 Tubular Array Anode Materials for an Efficient Lithium-Ion Storage Electrode

Author(s):  
Ming-Jun Xiao ◽  
Hong Zhang ◽  
Bo Ma ◽  
Ze-Qi Zhang ◽  
Xiangyang Li ◽  
...  

Developing novel composite materials with delicate micro or nanoscale structures that enable fast lithium transport are crucial for the high performance anode materials of lithium batteries. Herein, we developed a...


2021 ◽  
Vol 855 ◽  
pp. 157387
Author(s):  
Yanli Tan ◽  
Chunxiao Yang ◽  
Weiwei Qian ◽  
Xin Sui ◽  
Chao Teng ◽  
...  

2020 ◽  
Vol 4 (11) ◽  
pp. 3349-3360
Author(s):  
Rasu Muruganantham ◽  
Jeng-Shin Lu ◽  
Bor Kae Chang ◽  
Po Kai Wang ◽  
Wei-Ren Liu

Stoichiometric spinel-structured Co0.5M0.5V2O4 (M = Fe or Zn) nanocomposites as novel anode materials for lithium-ion storage and their electronic properties via theoretical analysis.


CrystEngComm ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1862-1866 ◽  
Author(s):  
Hai-Yang Wu ◽  
Min Huang ◽  
Chao Qin ◽  
Xin-Long Wang ◽  
Hai Hu ◽  
...  

Three polyoxometalates have been synthesized to be utilized as anode materials for lithium ion batteries.


CrystEngComm ◽  
2019 ◽  
Vol 21 (43) ◽  
pp. 6641-6651 ◽  
Author(s):  
Lü-Qiang Yu ◽  
Shi-Xi Zhao ◽  
Xia Wu ◽  
Qi-Long Wu ◽  
Jing-Wei Li ◽  
...  

V2O5 anode materials with low crystallinity release better electrochemical performance than that of V2O5 with high crystallinity.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1336 ◽  
Author(s):  
Thang Phan Nguyen ◽  
Il Tae Kim

Recently, composites of MXenes and two-dimensional transition metal dichalcogenides have emerged as promising materials for energy storage applications. In this study, W2C/WS2 alloy nanoflowers (NFs) were prepared by a facile hydrothermal method. The alloy NFs showed a particle size of 200 nm–1 μm, which could be controlled. The electrochemical performance of the as-prepared alloy NFs was investigated to evaluate their potential for application as lithium-ion battery (LIB) anodes. The incorporation of W2C in the WS2 NFs improved their electronic properties. Among them, the W2C/WS2_4h NF electrode showed the best electrochemical performance with an initial discharge capacity of 1040 mAh g−1 and excellent cyclability corresponding to a reversible capacity of 500 mAh g−1 after 100 cycles compared to that of the pure WS2 NF electrode. Therefore, the incorporation of W2C is a promising approach to improve the performance of LIB anode materials.


2020 ◽  
Vol 20 (11) ◽  
pp. 7034-7038 ◽  
Author(s):  
Mookala Premasudha ◽  
Bhumi Reddy Srinivasulu Reddy ◽  
Ki-Won Kim ◽  
Nagireddy Gari Subba Reddy ◽  
Jou-Hyeon Ahn ◽  
...  

In this work, the hydrothermal method was employed to produce SnO2/rGO as anode material. Nanostructured SnO2 was prepared to enhance reversibility and to deal with the undesirable volume changes during cycling. The SnO2/rGO hybrid exhibits long cycle life in lithium-ion storage capacity and rate capability with an initial discharge capacity of 1327 mAh/g at 0.1 C rate. These results demonstrate that a fabricated SnO2/rGO matrix will be a possible way to obtain high rate performance.


RSC Advances ◽  
2015 ◽  
Vol 5 (45) ◽  
pp. 35598-35607 ◽  
Author(s):  
Qun Li ◽  
Longwei Yin ◽  
Xueping Gao

A 3D interconnected porous silicon/carbon hybrid material is synthesized by a controllably magnesiothermic reduction route from silica aerogels and exhibits excellent lithium ion storage performance with long cyclic life and perfect rate capability.


Sign in / Sign up

Export Citation Format

Share Document