scholarly journals W2C/WS2 Alloy Nanoflowers as Anode Materials for Lithium-Ion Storage

Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1336 ◽  
Author(s):  
Thang Phan Nguyen ◽  
Il Tae Kim

Recently, composites of MXenes and two-dimensional transition metal dichalcogenides have emerged as promising materials for energy storage applications. In this study, W2C/WS2 alloy nanoflowers (NFs) were prepared by a facile hydrothermal method. The alloy NFs showed a particle size of 200 nm–1 μm, which could be controlled. The electrochemical performance of the as-prepared alloy NFs was investigated to evaluate their potential for application as lithium-ion battery (LIB) anodes. The incorporation of W2C in the WS2 NFs improved their electronic properties. Among them, the W2C/WS2_4h NF electrode showed the best electrochemical performance with an initial discharge capacity of 1040 mAh g−1 and excellent cyclability corresponding to a reversible capacity of 500 mAh g−1 after 100 cycles compared to that of the pure WS2 NF electrode. Therefore, the incorporation of W2C is a promising approach to improve the performance of LIB anode materials.

CrystEngComm ◽  
2019 ◽  
Vol 21 (43) ◽  
pp. 6641-6651 ◽  
Author(s):  
Lü-Qiang Yu ◽  
Shi-Xi Zhao ◽  
Xia Wu ◽  
Qi-Long Wu ◽  
Jing-Wei Li ◽  
...  

V2O5 anode materials with low crystallinity release better electrochemical performance than that of V2O5 with high crystallinity.


2020 ◽  
Vol 20 (11) ◽  
pp. 7034-7038 ◽  
Author(s):  
Mookala Premasudha ◽  
Bhumi Reddy Srinivasulu Reddy ◽  
Ki-Won Kim ◽  
Nagireddy Gari Subba Reddy ◽  
Jou-Hyeon Ahn ◽  
...  

In this work, the hydrothermal method was employed to produce SnO2/rGO as anode material. Nanostructured SnO2 was prepared to enhance reversibility and to deal with the undesirable volume changes during cycling. The SnO2/rGO hybrid exhibits long cycle life in lithium-ion storage capacity and rate capability with an initial discharge capacity of 1327 mAh/g at 0.1 C rate. These results demonstrate that a fabricated SnO2/rGO matrix will be a possible way to obtain high rate performance.


2015 ◽  
Vol 3 (23) ◽  
pp. 12328-12333 ◽  
Author(s):  
Junjie Zhou ◽  
Ting Yang ◽  
Minglei Mao ◽  
Weiji Ren ◽  
Qiuhong Li

We report a facile preparation of MnO2 nanosheet-coated CoFe2O4 nanofibers containing carbon for lithium ion batteries. The CoFe2O4/MnO2/C nanotubes exhibit a reversible capacity of 713.6 mA h g−1 at 100 mA g−1 after 250 cycles.


2013 ◽  
Vol 06 (06) ◽  
pp. 1350054 ◽  
Author(s):  
CHAO WU ◽  
QUANCHAO ZHUANG ◽  
YONGXIN WU ◽  
LEILEI TIAN ◽  
XINXI ZHANG ◽  
...  

Fe 3 O 4/carbon nanotubes (CNTs) nanocomposites are successfully prepared by a facile hydrothermal method, without any reducing agents. SEM shows that the CNTs are dispersed well in the Fe 3 O 4 nanoparticles of 50 to 100 nm in size. The electrochemical properties of the prepared nanocomposites as anode materials are further evaluated by galvanostatic charge/discharge cycling and cyclic voltammetry (CV). Results show that the nanocomposites display an initial discharge capacity of 1421 mAh⋅g-1 and maintain 1100 mAh⋅g-1 up to 40 cycles in the voltage of 0.005–3.0 V at 100 mAh⋅g-1. When the current density is to 0.5, 1, 2, 5 and 1 C, the nanocomposites still exhibit discharge capacity of 1615.8, 817.0, 585.0, 391.0 and (585.0 ± 45.0) mAh⋅g-1, respectively, which are potential for anode materials in lithium-ion batteries.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2363
Author(s):  
Renqing Guo ◽  
Xiaohua Huang ◽  
Yan Lin ◽  
Yiqi Cao

To enhance the electrochemical performance of nickel oxide as anode materials for lithium ion batteries, NiO/carbon aerogel microspheres with a plum-pudding structure were designed and prepared by a sol-gel technique followed by two calcination processes under different atmospheres. Carbon aerogel microspheres (pudding) can act as a buffering and conductive matrix to enhance the structural stability and conductivity of the embedded NiO particles (plums), which are quite advantageous to the cycling performance and rate capability. Consequently, NiO/carbon aerogel microspheres with a plum-pudding structure deliver an initial charge capacity of 808 mAh g−1 and a reversible capacity retention of 85% after 100 cycles. The enhancement in electrochemical performance relative to pure NiO microspheres suggests that the design of a plum-pudding structure is quite effective.


2022 ◽  
Vol 9 ◽  
Author(s):  
Long-Long Ren ◽  
Lin-Hui Wang ◽  
Yu-Feng Qin ◽  
Qiang Li

In order to solve the poor cycle stability and the pulverization of cobalt sulfides electrodes, a series of amorphous and crystalline cobalt sulfides were prepared by one-pot solvothermal synthesis through controlling the reaction temperatures. Compared to the crystalline cobalt sulfide electrodes, the amorphous cobalt sulfide electrodes exhibited superior electrochemical performance. The high initial discharge and charge capacities of 2,132 mAh/g and 1,443 mAh/g at 200 mA/g were obtained. The reversible capacity was 1,245 mAh/g after 200 cycles, which is much higher than the theoretical capacity. The specific capability was 815 mAh/g at 800 mA/g and increased to 1,047 mAh/g when back to 100 mA/g, indicating the excellent rate capability. The outstanding electrochemical performance of the amorphous cobalt sulfide electrodes could result from the unique characteristics of more defects, isotropic nature, and the absence of grain boundaries for amorphous nanostructures, indicating the potential application of amorphous cobalt sulfide as anodes for lithium-ion batteries.


NANO ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. 1850141 ◽  
Author(s):  
Yalan Chen ◽  
Jingtong Zhang ◽  
Haijun Liu ◽  
Zhaojie Wang

Sodium ion batteries based on the more sodium source reserve than that of lithium have been designed as promising alternatives to lithium ion batteries. However, several problems including unsatisfied specific capacity and serious cyclic stability must be solved before the reality. One of the effective approaches to solve the abovementioned problems is to search for suitable anode materials. In this work, we designed and prepared FeSe2 nanoflakes via a simple hydrothermal method which can be adjusted in composition by Fe precursor. As a potential anode for sodium storage, the optimized FeSe2 electrode was further evaluated in different electrolytes of NaClO4 in propylene carbonate/fluoroethylene carbonate and NaCF3SO3 in diethylene glycol dimethyl ether. The capacity was about 470[Formula: see text]mAh[Formula: see text]g[Formula: see text] and 535[Formula: see text]mAh[Formula: see text]g[Formula: see text] at 0.5[Formula: see text]A[Formula: see text]g[Formula: see text], respectively, in the voltage between 0.5[Formula: see text]V and 2.9[Formula: see text]V in the cycle of stabilization phase. Superior performance both in capacity and in stability was obtained in ether-based electrolyte, which affords the property without plugging the intermediates of transition metal dichalcogenides during charge/discharge processes.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Dan Qin ◽  
Peng Yan ◽  
Guangzhong Li ◽  
Yunchuang Wang ◽  
Yukuan An ◽  
...  

Hierarchical CoO nano/microstructures are synthesized via a hydrothermal method and a subsequent annealed process. When evaluated for use in lithium-ion batteries, hierarchical CoO nano/microstructures show a high initial discharge capacity of 1370 mAh/g and a high reversible capacity of 1148 mAh/g over 20 cycles at a current density of 100 mA/g. Superior rate performance with coulombic efficiency of about 100% upon galvanostatic cycling is also revealed. The excellent electrochemical properties of hierarchical CoO nano/microstructures make it a promising alternative anode material for high power lithium-ion batteries applications.


2019 ◽  
Vol 48 (34) ◽  
pp. 12832-12838 ◽  
Author(s):  
Qi-Long Wu ◽  
Shi-Xi Zhao ◽  
Le Yu ◽  
Lü-Qiang Yu ◽  
Xiao-Xiao Zheng ◽  
...  

MoO3−x nanobelts with different concentrations of oxygen vacancies were synthesized in situ, whose effects on lithium-ion storage performance were researched.


Sign in / Sign up

Export Citation Format

Share Document