Elucidating the Interfacial Structure at the Ionic Liquid-Solid Interface Using Atomic Force Microscopy and Molecular Dynamics

2020 ◽  
Vol 22 (48) ◽  
pp. 28191-28201
Author(s):  
Georgia A. Pilkington ◽  
Rebecca Welbourn ◽  
Anna Oleshkevych ◽  
Seiya Watanabe ◽  
Patricia Pedraz ◽  
...  

The influence of ambient levels of water on the electroresponsive interfacial structuring and nanofriction of ionic liquid lubricant mixtures has been investigated by neutron reflectivity and atomic force microscopy.


2021 ◽  
Author(s):  
Hiroki Koide ◽  
Noriyuki Kodera ◽  
Shveta Bisht ◽  
Shoji Takada ◽  
Tsuyoshi Terakawa

The condensin protein complex compacts chromatin during mitosis using its DNA-loop extrusion activity. Previous studies proposed scrunching and loop-capture models as molecular mechanisms for the loop extrusion process, both of which assume the binding of double-strand (ds) DNA to the so-called hinge domain formed at the interface of the condensin subunits Smc2 and Smc4. However, how the hinge domain contacts dsDNA has remained unknown, potentially due to its conformational plasticity. Here, we conducted atomic force microscopy imaging of the budding yeast condensin holo-complex and used this data as basis for coarse-grained molecular dynamics simulations to model the hinge structure in a transient open conformation. We then simulated the dsDNA binding to open and closed hinge conformations, predicting that dsDNA binds to the outside surface when closed and to the outside and inside surfaces when open. Our simulations also suggested that the hinge can close around dsDNA bound to the inside surface. The conformational change of the hinge domain might be essential for the dsDNA binding regulation and play important roles in condensin-mediated DNA-loop extrusion.


Food Colloids ◽  
2007 ◽  
pp. 13-21 ◽  
Author(s):  
Alan R. Mackie ◽  
A. Patrick Gunning ◽  
Peter J. Wilde ◽  
Victor J. Morris

2020 ◽  
Vol 22 (34) ◽  
pp. 19162-19171 ◽  
Author(s):  
Georgia A. Pilkington ◽  
Anna Oleshkevych ◽  
Patricia Pedraz ◽  
Seiya Watanabe ◽  
Milad Radiom ◽  
...  

Neutron reflectivity and atomic force microscopy results reveal the electroresponsive interfacial structuring and nano-frictional properties of ionic liquid (IL) lubricant mixtures with a polar solvent are strongly dependent on bulk IL concentration.


Sign in / Sign up

Export Citation Format

Share Document