Photoelectrochemical Supercontinuum Solar Light Zero Bias Hydrogen Generation with Membrane-Based Cells Designed for Decreasing Overall Water Electrolysis Voltage and Water Dissociation (23)

2020 ◽  
Vol MA2020-02 (61) ◽  
pp. 3105-3105
Author(s):  
Kenji Sakamaki ◽  
Yume Honda ◽  
Yumena Kobayashi ◽  
Rina Yoshida ◽  
Erika Hiruta ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ruopeng Li ◽  
Hao Xu ◽  
Peixia Yang ◽  
Dan Wang ◽  
Yun Li ◽  
...  

AbstractTo achieve high efficiency of water electrolysis to produce hydrogen (H2), developing non-noble metal-based catalysts with considerable performance have been considered as a crucial strategy, which is correlated with both the interphase properties and multi-metal synergistic effects. Herein, as a proof of concept, a delicate NiCo(OH)x-CoyW catalyst with a bush-like heterostructure was realized via gas-template-assisted electrodeposition, followed by an electrochemical etching-growth process, which ensured a high active area and fast gas release kinetics for a superior hydrogen evolution reaction, with an overpotential of 21 and 139 mV at 10 and 500 mA cm−2, respectively. Physical and electrochemical analyses demonstrated that the synergistic effect of the NiCo(OH)x/CoyW heterogeneous interface resulted in favorable electron redistribution and faster electron transfer efficiency. The amorphous NiCo(OH)x strengthened the water dissociation step, and metal phase of CoW provided sufficient sites for moderate H immediate adsorption/H2 desorption. In addition, NiCo(OH)x-CoyW exhibited desirable urea oxidation reaction activity for matching H2 generation with a low voltage of 1.51 V at 50 mA cm−2. More importantly, the synthesis and testing of the NiCo(OH)x-CoyW catalyst in this study were all solar-powered, suggesting a promising environmentally friendly process for practical applications.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Huanhuan Liu ◽  
Zhenhua Yan ◽  
Xiang Chen ◽  
Jinhan Li ◽  
Le Zhang ◽  
...  

The facile synthesis of highly active and stable bifunctional electrocatalysts to catalyze water splitting is attractive but challenging. Herein, we report the electrodeposition of Pt-decorated Ni(OH)2/CeO2 (PNC) hybrid as an efficient and robust bifunctional electrocatalyst. The graphite-supported PNC catalyst delivers superior hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities over the benchmark Pt/C and RuO2, respectively. For overall water electrolysis, the PNC hybrid only requires a cell voltage of 1.45 V at 10 mA cm−2 and sustains over 85 h at 1000 mA cm−2. The remarkable HER/OER performances are attributed to the superhydrophilicity and multiple effects of PNC, in which Ni(OH)2 and CeO2 accelerate HER on Pt due to promoted water dissociation and strong electronic interaction, while the electron-pulling Ce cations facilitate the generation of high-valence Ni OER-active species. These results suggest the promising application of PNC for H2 production from water electrolysis.


2020 ◽  
Author(s):  
Hong Liu ◽  
Jian-Jun Wang ◽  
Li-Wen Jiang ◽  
Yuan Huang ◽  
Bing Bing Chen ◽  
...  

<p>Hydrogen production via alkaline water electrolysis is of significant interest. However, the additional water dissociation step makes the Volmer step a relatively more sluggish kinetics and consequently leads to a slower reaction rate than that in acidic solution. Herein, we demonstrate an effective strategy that Co(OH)<sub>2</sub> can promote the Volmer process by accelerating water dissociation and enhance the electrocatalytic performance of CoP toward alkaline hydrogen evolution reaction. The Co(OH)<sub>2</sub> nanoplates are electrochemically induced in-situ generated to form a nanotree-like structure with porous CoP nanowires, endowing the hybrid electrocatalyst with superior charge transportation, more exposed active sites, and enhanced reaction kinetics. This strategy may be extended to <a></a><a>other phosphides and chalcogenides </a>and provide insight into the design and fabrication of efficient alkaline HER catalysts.</p>


Author(s):  
Hyeonuk Choi ◽  
Surendran Subramani ◽  
Dohun Kim ◽  
Yoongu Lim ◽  
Jeahyoung Lim ◽  
...  

To enhance the efficiency of hydrogen production, bimetallic oxides with spinel structures, M2GeO4 (M = Fe, Co), were synthesized via a facile one-pot hydrothermal method and were used as electrocatalysts...


Sign in / Sign up

Export Citation Format

Share Document