Boosting eco-friendly hydrogen generation by urea-assisted water electrolysis using spinel M2GeO4 (M = Fe, Co) as an active electrocatalyst

Author(s):  
Hyeonuk Choi ◽  
Surendran Subramani ◽  
Dohun Kim ◽  
Yoongu Lim ◽  
Jeahyoung Lim ◽  
...  

To enhance the efficiency of hydrogen production, bimetallic oxides with spinel structures, M2GeO4 (M = Fe, Co), were synthesized via a facile one-pot hydrothermal method and were used as electrocatalysts...

2015 ◽  
Vol 17 (1) ◽  
pp. 509-517 ◽  
Author(s):  
Jie Chen ◽  
Shaohua Shen ◽  
Po Wu ◽  
Liejin Guo

Nitrogen-doped CeOx nanoparticles modified g-C3N4 was successfully prepared via a one-pot method, which showed significantly enhanced photocatalytic activity for hydrogen generation under visible light compared to the pure g-C3N4 photocatalyst.


RSC Advances ◽  
2019 ◽  
Vol 9 (49) ◽  
pp. 28525-28533 ◽  
Author(s):  
Yogesh A. Sethi ◽  
Aniruddha K. Kulkarni ◽  
Supriya K. Khore ◽  
Rajendra P. Panmand ◽  
Sandip C. Kanade ◽  
...  

Plasmonic enhancement of photocatalytic hydrogen generation is demonstrated using hierarchical Ag decorated CdMoO4 synthesized using a hydrothermal method.


2020 ◽  
Vol 7 (14) ◽  
pp. 2692-2701 ◽  
Author(s):  
Shuangshuang Kai ◽  
Baojuan Xi ◽  
Haibo Li ◽  
Shenglin Xiong

All-solid-state Z-scheme CdS/Co9S8-RGO heterostructures are synthesized by a facile one-pot hydrothermal method followed by annealing, which exhibit a H2 evolution rate up to 4.82 mmol h−1 g−1 and a remarkable stability due to an efficient charge transfer and separation.


2021 ◽  
Vol 1034 (1) ◽  
pp. 012075
Author(s):  
Purnami ◽  
ING. Wardana ◽  
Sudjito ◽  
Denny Widhiyanuriyawan ◽  
Nurkholis Hamidi

Nanoscale ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 2685-2692
Author(s):  
Isabel S. Curtis ◽  
Ryan J. Wills ◽  
Mita Dasog

High crystallinity, low oxide content, and low sintering lead to optimally performing mesoporous Si photocatalysts for solar-driven hydrogen production.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shan Wang ◽  
Aolin Lu ◽  
Chuan-Jian Zhong

AbstractAs a promising substitute for fossil fuels, hydrogen has emerged as a clean and renewable energy. A key challenge is the efficient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efficient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active, stable, and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use, which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity, stability, and efficiency. This will be followed by outlining current knowledge on the two half-cell reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be discussed. New strategies and insights in exploring the synergistic structure, morphology, composition, and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally, future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efficient production of hydrogen from water splitting electrolysis will also be outlined.


Sign in / Sign up

Export Citation Format

Share Document