High-Performance Lithium-Sulfur Batteries with Metal-Deposited Graphite Cathode and Lithium Polysulfide Catholyte

2020 ◽  
Vol MA2020-02 (2) ◽  
pp. 399-399
Author(s):  
Natsuho Kazahaya ◽  
Nanami Uesugi ◽  
Yu Katayama ◽  
Hiromori Tsutsumi
Nanoscale ◽  
2020 ◽  
Vol 12 (32) ◽  
pp. 16678-16684 ◽  
Author(s):  
Sheng-You Qiu ◽  
Chuang Wang ◽  
Zai-Xing Jiang ◽  
Li-Su Zhang ◽  
Liang-Liang Gu ◽  
...  

A novel heterostructure consisting of highly ordered TiO2 nanoarrays grown on the MXene nanosheets displays formidable dual chemisorption capability to trap polysulfides and superior electrochemical performance for Li–S batteries.


Author(s):  
Jian Bao ◽  
Xin-Yang Yue ◽  
Rui-Jie Luo ◽  
Yong-Ning Zhou

Cubic MnSe2 microcubes are introduced into sulfur cathodes to prevent the shuttle effect of lithium polysulfide through binding with polysulfide via the strong interaction between Se and S, thus alleviate...


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 377
Author(s):  
Sang-Kyu Lee ◽  
Hun Kim ◽  
Sangin Bang ◽  
Seung-Taek Myung ◽  
Yang-Kook Sun

We developed a new nanowire for enhancing the performance of lithium-sulfur batteries. In this study, we synthesized WO3 nanowires (WNWs) via a simple hydrothermal method. WNWs and one-dimensional materials are easily mixed with carbon nanotubes (CNTs) to form interlayers. The WNW interacts with lithium polysulfides through a thiosulfate mediator, retaining the lithium polysulfide near the cathode to increase the reaction kinetics. The lithium-sulfur cell achieves a very high initial discharge capacity of 1558 and 656 mAh g−1 at 0.1 and 3 C, respectively. Moreover, a cell with a high sulfur mass loading of 4.2 mg cm−2 still delivers a high capacity of 1136 mAh g−1 at a current density of 0.2 C and it showed a capacity of 939 mAh g−1 even after 100 cycles. The WNW/CNT interlayer maintains structural stability even after electrochemical testing. This excellent performance and structural stability are due to the chemical adsorption and catalytic effects of the thiosulfate mediator on WNW.


Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 2025-2032
Author(s):  
Fan Zhang ◽  
Yunlei Zhou ◽  
Yi Zhang ◽  
Dongchan Li ◽  
Zhichao Huang

AbstractThe design of sulfur hosts with polar, sulfurphilic, and conductive network is critical to lithium-sulfur (Li-S) batteries whose potential applications are greatly limited by the lithium polysulfide shuttle effect. Mxenes, possessing layered-stacked structures and high electrical conductivities, have a great potential in sulfur hosts. Herein, sulfur nanoparticles uniformly decorated on titanium carbide Mxene (S@Ti3C2Tx Mxene) are synthesized via a hydrothermal method and then utilized as a cathode for lithium-sulfur batteries. This unique architecture could accommodate sulfur nanoparticles expansion during cycling, suppress the shuttling of lithium polysulfide, and enhance electronical conductivity. Consequently, the S@Mxene with a high areal sulfur loading (∼4.0 mg cm−2) exhibits a high capacity (1477.2 mAh g−1) and a low capacity loss per cycle of 0.18% after 100 cycles at 0.2 C. This work may shed lights on the development of high performance sulfur-based cathode materials for Li-S batteries.


2018 ◽  
Vol 6 (14) ◽  
pp. 5862-5869 ◽  
Author(s):  
Ming Li ◽  
Chao Wang ◽  
Lixiao Miao ◽  
Jingwei Xiang ◽  
Tanyuan Wang ◽  
...  

The MoP/rGO composite modified separator is applicable to design high-performance lithium–sulfur batteries and it is potential for practical application.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2478
Author(s):  
Chenghao Yao ◽  
Wei Li ◽  
Kang Duan ◽  
Chen Zhu ◽  
Jinze Li ◽  
...  

Lithium-sulfur (Li-S) batteries have received extensive attention due to their high theoretical specific capacity and theoretical energy density. However, their commercialization is hindered by the shuttle effect caused by the dissolution of lithium polysulfide. To solve this problem, a method is proposed to improve the performance of Li-S batteries using Ti2N(Ti2NS2) with S-functional groups as the sulfur cathode host material. The calculation results show that due to the mutual attraction between Li and S atoms, Ti2NS2 has the moderate adsorption energies for Li2Sx species, which is more advantageous than Ti2NO2 and can effectively inhibit the shuttle effect. Therefore, Ti2NS2 is a potential cathode host material, which is helpful to improve the performance of Li-S batteries. This work provides a reference for the design of high-performance sulfur cathode materials.


Author(s):  
Haojie Li ◽  
Yihua Song ◽  
Kai Xi ◽  
Wei Wang ◽  
Sheng Liu ◽  
...  

A sufficient areal capacity is necessary for achieving high-energy lithium sulfur battery, which requires high enough sulfur loading in cathode materials. Therefore, kinetically fast catalytic conversion of polysulfide intermediates is...


Sign in / Sign up

Export Citation Format

Share Document