Rationally Designed 3D Graphene Hollow Spheres Towards Building High Energy – High Power Energy Storage System with Long Durability

2020 ◽  
Vol MA2020-02 (2) ◽  
pp. 420-420
Author(s):  
Ranjith Thangavel ◽  
Woong Oh ◽  
Mihee Jeong ◽  
Soyeong Yun ◽  
Munhyeok Choi ◽  
...  
2018 ◽  
Vol 8 (7) ◽  
pp. 1176 ◽  
Author(s):  
Mahdi Soltani ◽  
Jan Ronsmans ◽  
Shouji Kakihara ◽  
Joris Jaguemont ◽  
Peter Van den Bossche ◽  
...  

Public transportation based on electric vehicles has attracted significant attention in recent years due to the lower overall emissions it generates. However, there are some barriers to further development and commercialization. Fewer charging facilities in comparison to gas stations, limited battery lifetime, and extra costs associated with its replacement present some barriers to achieve better acceptance. A practical solution to improve the battery lifetime and driving range is to eliminate the large-magnitude pulse current flow from and to the battery during acceleration and deceleration. Hybrid energy storage systems which combine high-power (HP) and high-energy (HE) storage units can be used for this purpose. Lithium-ion capacitors (LiC) can be used as a HP storage unit, which is similar to a supercapacitor cell but with a higher rate capability, a higher energy density, and better cyclability. In this design, the LiC can provide the excess power required while the battery fails to do so. Moreover, hybridization enables a downsizing of the overall energy storage system and decreases the total cost as a consequence of lifetime, performance, and efficiency improvement. The aim of this paper is to investigate the effectiveness of the hybrid energy storage system in protecting the battery from damage due to the high-power rates during charging and discharging. The procedure followed and presented in this paper demonstrates the good performance of the evaluated hybrid storage system to reduce the negative consequences of the power peaks associated with urban driving cycles and its ability to improve the lifespan by 16%.


2017 ◽  
Vol 29 (17) ◽  
pp. 7122-7130 ◽  
Author(s):  
Ranjith Thangavel ◽  
Karthikeyan Kaliyappan ◽  
Dae-Ung Kim ◽  
Xueliang Sun ◽  
Yun-Sung Lee

Sci ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 3 ◽  
Author(s):  
◽  
◽  
◽  
◽  
◽  
...  

In Electrified Vehicles, the cost, efficiency, and durability of electrified vehicles are dependent on the energy storage system (ESS) components, configuration and its performance. This paper, pursuing a minimal size tactic, describes a methodology for quantitatively and qualitatively investigating the impacts of a full bandwidth load on the ESS in the HEV. However, the methodology can be extended to other electrified vehicles. The full bandwidth load, up to the operating frequency of the electric motor drive (20 kHz), is empirically measured which includes a frequency range beyond the usually covered frequency range by published standard drive cycles (up to 0.5 Hz). The higher frequency band is shown to be more efficiently covered by a Hybrid Energy Storage System (HESS) which in this paper is defined as combination of a high energy density battery, an Ultra-Capacitor (UC), an electrolytic capacitor, and a film capacitor. In this paper, the harmonic and dc currents and voltages are measured through two precision methods and then the results are used to discuss about overall HEV efficiency and durability. More importantly, the impact of the addition of high-band energy storage devices in reduction of power loss during transient events is disclosed through precision measurement based methodology.


1975 ◽  
Author(s):  
E. J. Lucas ◽  
W. F. Punchard ◽  
P. M. Margosian ◽  
R. J. Thome ◽  
R. J. Camille

Sci ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 26 ◽  
Author(s):  
Masood Shahverdi ◽  
Michael Mazzola ◽  
Matthew Doude ◽  
Quintin Grice ◽  
Jim Gafford ◽  
...  

In Electrified Vehicles, the cost, efficiency, and durability of electrified vehicles are dependent on the energy storage system (ESS) components, configuration and its performance. This paper, pursuing a minimal size tactic, describes a methodology for quantitatively and qualitatively investigating the impacts of a full bandwidth load on the ESS in the HEV. However, the methodology can be extended to other electrified vehicles. The full bandwidth load, up to the operating frequency of the electric motor drive (20 kHz), is empirically measured which includes a frequency range beyond the usually covered frequency range by published standard drive cycles (up to 0.5 Hz). The higher frequency band is shown to be more efficiently covered by a Hybrid Energy Storage System (HESS) which in this paper is defined as combination of a high energy density battery, an Ultra-Capacitor (UC), an electrolytic capacitor, and a film capacitor. In this paper, the harmonic and dc currents and voltages are measured through two precision methods and then the results are used to discuss about overall HEV efficiency and durability. More importantly, the impact of the addition of high-band energy storage devices in reduction of power loss during transient events is disclosed through precision measurement based methodology.


Sign in / Sign up

Export Citation Format

Share Document