(Invited) Recent Progress on Selective Area Regrowth and Doping for Vertical GaN Power Transistors

2021 ◽  
Vol MA2021-02 (34) ◽  
pp. 995-995
Author(s):  
Yuji Zhao
1997 ◽  
Vol 482 ◽  
Author(s):  
J. C. Zolper ◽  
J. Han ◽  
S. B. Van Deusen ◽  
M. H. Crawford ◽  
R. M. Biefeld ◽  
...  

AbstractHeterostructure modulation doped transistors (MODFETs) based on AlGaN/GaN structures have demonstrated impressive DC and microwave performance often despite high transistor access resistance. One approach to reducing the access resistance is to use selective area Si-implantation. While several reports exist on Si-implantation in GaN, little work has been done on implantation in AlGaN. In addition, more information on the annealing of implantation damage in GaN is needed to optimize its use in FETs and thyristors.We report the electrical and structural properties of Si-implanted Al0.15Ga0.85N based on Hall measurements and Rutherford Backscattering (RBS) spectra, respectively. Al0.15Ga0.85N shows less damage accumulation than GaN for a room temperature Si-implant dose of 5×1015 cm-2 based on the minimum channeling yield (26% for AlGaN as compared to 34% for GaN), however, as with GaN, this damage is difficult to remove by thermal annealing at °C.


2021 ◽  
Author(s):  
Houqiang Fu ◽  
Kai Fu ◽  
Chen Yang ◽  
Hanxiao Liu ◽  
Kevin A. Hatch ◽  
...  

Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).


Author(s):  
Thao A. Nguyen

It is well known that the large deviations from stoichiometry in iron sulfide compounds, Fe1-xS (0≤x≤0.125), are accommodated by iron vacancies which order and form superstructures at low temperatures. Although the ordering of the iron vacancies has been well established, the modes of vacancy ordering, hence superstructures, as a function of composition and temperature are still the subject of much controversy. This investigation gives direct evidence from many-beam lattice images of Fe1-xS that the 4C superstructure transforms into the 3C superstructure (Fig. 1) rather than the MC phase as previously suggested. Also observed are an intrinsic stacking fault in the sulfur sublattice and two different types of vacancy-ordering antiphase boundaries. Evidence from selective area optical diffractograms suggests that these planar defects complicate the diffraction pattern greatly.


Author(s):  
Dawn A. Bonnell ◽  
Yong Liang

Recent progress in the application of scanning tunneling microscopy (STM) and tunneling spectroscopy (STS) to oxide surfaces has allowed issues of image formation mechanism and spatial resolution limitations to be addressed. As the STM analyses of oxide surfaces continues, it is becoming clear that the geometric and electronic structures of these surfaces are intrinsically complex. Since STM requires conductivity, the oxides in question are transition metal oxides that accommodate aliovalent dopants or nonstoichiometry to produce mobile carriers. To date, considerable effort has been directed toward probing the structures and reactivities of ZnO polar and nonpolar surfaces, TiO2 (110) and (001) surfaces and the SrTiO3 (001) surface, with a view towards integrating these results with the vast amount of previous surface analysis (LEED and photoemission) to build a more complete understanding of these surfaces. However, the spatial localization of the STM/STS provides a level of detail that leads to conclusions somewhat different from those made earlier.


Sign in / Sign up

Export Citation Format

Share Document