Effect of Tetrapropyl Ammonium Hydroxide on Zn Dendrite Formation for Rechargeable Aqueous Battery

2021 ◽  
Vol MA2021-02 (5) ◽  
pp. 1890-1890
Author(s):  
Lunara Rakhymbay ◽  
Indira Kurmanbayeva ◽  
Nurzhan Umirov ◽  
Aishuak Konarov ◽  
Zhumabay Bakenov
2020 ◽  
Vol 8 ◽  
Author(s):  
Indira Kurmanbayeva ◽  
Lunara Rakhymbay ◽  
Kuralay Korzhynbayeva ◽  
Akylbek Adi ◽  
Dauren Batyrbekuly ◽  
...  

Zinc metal is widely used as an anode in various aqueous systems. However, zinc anode suffers from the dendrite formation on the surface upon cycling leading to a poor cyclability of a cell and its termination due to short circuit. In this work, the effect of tetrapropylammonium hydroxide (TPAH) was studied as an electrolyte additive for aqueous Zn//ZnCl2 + LiCl//LiFePO4 battery. TPAH additive prolongs the battery cycle life depending on its concentration (0.01–0.1 M). The better capacity retention over 350 cycles was observed for a symmetrical Zn//ZnCl2 + LiCl//Zn cell with 0.05 M TPAH whereas without additives the cell worked for only 110 cycles. The mechanism of TPAH influence on capacity retention is proposed based on the results of SEM and XRD analysis of the Zn anode and FTIR and NMR studies of the electrolyte. The XRD patterns of the negative electrode of the cell with TPAH indicates that zinc was preferentially deposited in a highly oriented (002) direction, which is more resistant against dendrite formation. These differences in deposited structure of Zn dendrites were confirmed by SEM images as well. FTIR and NMR spectra showed that TPAH decomposes to propylamine (RnN+H) and propene during cycling. TPAH also has an effect on the size and uniform distribution of Zn growth sides.


Author(s):  
Jianwei Zhou ◽  
Wei Zheng ◽  
Taekoo Lee

Abstract Multi-Chip Package (MCP) decapsulation is now becoming a rising problem. Because for traditional decapsulation method, acid can’t dissolve the top silicon die to expose the bottom die surface in MCP. It makes inspecting the bottom die in MCP is difficult. In this paper, a new MCP decapsulation technology combining mechanical polishing with chemical etching is introduced. This new technology can remove the top die quickly without damaging the bottom die using KOH and Tetra-Methyl Ammonium Hydroxide (TMAH). The technology process and relative application are presented. The factors that affect the KOH and TMAH etch rate are studied. The usage difference between the two etchant is discussed.


2019 ◽  
Vol 15 (7) ◽  
pp. 762-775
Author(s):  
Ramu Ivaturi ◽  
Thuttagunta Manikya Sastry ◽  
Satyaveni Sunkara

Background: Cefoperazone Sulbactam injection is a cephalosporin antibiotic with a β- lactamase inhibitor used in the treatment for intra abdominal infections, Urinary track infections, surgical infections, etc. The combination is not official in any of the pharmacopeia for their content and impurities determination. Introduction: The present study involves the development of a simple, rapid, accurate, sensitive and stability indicating RP-HPLC method for the quantitative estimation of Cefoperazone Sulbactam mixture and its impurities in bulk and pharmaceutical dosage forms. Methods: 0.005 M Tetrabutyl ammonium hydroxide buffer solution pH adjusted to 6.80 and Acetonitrile combination has been used in a gradient programme with a flow rate of 1.0 ml/min. The retention time of Cefoperazone and Sulbactam were observed at around 8.5 and 19.5 minutes respectively. The UV detection was carried out at a wavelength of 230 nm. The chromatographic separation was achieved using Waters xbridge C18-150*4.6 mm, 3.5 µm HPLC column. The method has been validated according to the current International Council for Harmonization (ICH) guidelines for the method validation parameters such as Specificity, linearity, range, accuracy, precision, robustness and sensitivity. Results: The validation results indicate that the method is specific, as the known impurities and other impurities formed during the forced degradation studies were not co-eluting with the main components. Moreover, all these impurities were found to be spectrally pure, proving the stability indicating power of the method. The linearity and range of the method is in the range of 0.01-150%, highly accurate (100.2%), precise (<1%) and robust. Conclusion: The proposed method was accurate and specific for the quantitative analysis of Cefoperazone and Sulbactam and their related impurities in the sterile mixture. Hence the proposed method can be used for the quantification of impurities in routine as well as stability analysis in the development as well as quality control laboratories.


2019 ◽  
Vol 11 (26) ◽  
pp. 23222-23228 ◽  
Author(s):  
Yuan Xu ◽  
Yiting Zheng ◽  
Congcheng Wang ◽  
Qing Chen
Keyword(s):  

2020 ◽  
Vol 7 (3) ◽  
pp. 973-1007
Author(s):  
Mohamed A. El-Nemr ◽  
Nabil M. Abdelmonem ◽  
Ibrahim M. A. Ismail ◽  
Safaa Ragab ◽  
Ahmed El Nemr

2019 ◽  
Vol 18 (10) ◽  
pp. 1105-1111 ◽  
Author(s):  
Jitti Kasemchainan ◽  
Stefanie Zekoll ◽  
Dominic Spencer Jolly ◽  
Ziyang Ning ◽  
Gareth O. Hartley ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yiping Zou ◽  
Tingting Liu ◽  
Qijun Du ◽  
Yingying Li ◽  
Haibo Yi ◽  
...  

AbstractElectrochemically reversible redox couples that embrace more electron transfer at a higher potential are the eternal target for energy storage batteries. Here, we report a four-electron aqueous zinc-iodine battery by activating the highly reversible I2/I+ couple (1.83 V vs. Zn/Zn2+) in addition to the typical I−/I2 couple (1.29 V). This is achieved by intensive solvation of the aqueous electrolyte to yield ICl inter-halogens and to suspend its hydrolysis. Experimental characterization and modelling reveal that limited water activity and sufficient free chloride ions in the electrolyte are crucial for the four-electron process. The merits of the electrolyte also afford to stabilize Zn anode, leading to a reliable Zn-I2 aqueous battery of 6000 cycles. Owing to high operational voltage and capacity, energy density up to 750 Wh kg−1 based on iodine mass was achieved (15–20 wt% iodine in electrode). It pushes the Zn-I2 battery to a superior level among these available aqueous batteries.


2021 ◽  
pp. 395-403
Author(s):  
Xiaoxia Guo ◽  
Zhenyu Zhang ◽  
Jianwei Li ◽  
Ningjing Luo ◽  
Guo-Liang Chai ◽  
...  

2021 ◽  
Vol 263 ◽  
pp. 124373
Author(s):  
Atin Pramanik ◽  
Shreyasi Chattopadhyay ◽  
Sandipan Maiti ◽  
Goutam De ◽  
Sourindra Mahanty

Sign in / Sign up

Export Citation Format

Share Document