Fine MCP Decapsulation Technology Development

Author(s):  
Jianwei Zhou ◽  
Wei Zheng ◽  
Taekoo Lee

Abstract Multi-Chip Package (MCP) decapsulation is now becoming a rising problem. Because for traditional decapsulation method, acid can’t dissolve the top silicon die to expose the bottom die surface in MCP. It makes inspecting the bottom die in MCP is difficult. In this paper, a new MCP decapsulation technology combining mechanical polishing with chemical etching is introduced. This new technology can remove the top die quickly without damaging the bottom die using KOH and Tetra-Methyl Ammonium Hydroxide (TMAH). The technology process and relative application are presented. The factors that affect the KOH and TMAH etch rate are studied. The usage difference between the two etchant is discussed.

2014 ◽  
Vol 778-780 ◽  
pp. 746-749 ◽  
Author(s):  
Yong Zhao Yao ◽  
Yukari Ishikawa ◽  
Yoshihiro Sugawara ◽  
Koji Sato

High temperature (>1000 °C) chemical etching using molten KCl or molten KCl+KOH as the etchant has been carried out to remove the mechanical-polishing (MP) induced damage layer from 4H-SiC surface. Atomic force microscopy observations have shown that line-shaped surface scratches that have appeared on the as-MPed surface could be completely removed by KCl-only etching or by KCl+KOH etching (KCl:KOH=99:1 in weight) at ~1100 °C. Between the two recipes, KCl+KOH etching has shown a higher etch rate (6~7 times) and is able to remove ~9 μm and ~36 μm-thick damage layer from the Si (0001) and the C(000-1) surface, respectively. Besides, KCl+KOH etching seems to have formed a Si (0001) surface covered with atomic steps while KCl-only etched surface is featured with nanometer-scale pores.


2018 ◽  
Author(s):  
Ong Pei Hoon ◽  
Ng Kiong Kay ◽  
Gwee Hoon Yen

Abstract Chemical etching is commonly used in exposing the die surface from die front-side and die backside because of its quick etching time, burr-free and stress-free. However, this technique is risky when performing copper lead frame etching during backside preparation on small and non-exposed die paddle package. The drawback of this technique is that the copper leads will be over etched by 65% Acid Nitric Fuming even though the device’s leads are protected by chemical resistance tape. Consequently, the device is not able to proceed to any other further electrical measurements. Therefore, we introduced mechanical preparation as an alternative solution to replace the existing procedure. With the new method, we are able to ensure the copper leads are intact for the electrical measurements to improve the effectiveness and accuracy of physical failure analysis.


Author(s):  
Pablo Cazenave ◽  
Ming Gao ◽  
Hans Deeb ◽  
Sean Black

The project “Development of an Industry Test Facility and Qualification Processes for in-line inspection (ILI) technology Evaluation and Enhancements” aims to expand knowledge of ILI technology performance and identify gaps where new technology is needed. Additionally, this project also aims to provide ILI technology developers, researchers and pipeline operators a continuing resource for accessing test samples with a range of pipeline integrity threats and vintages; and inline technology test facilities at the Technology Development Center (TDC) of Pipeline Research Council International, Inc. (PRCI), a PRCI managed facility available for future industry and PHMSA research projects. An ILI pull test facility was designed and constructed as part of this project based on industry state-of-the-art and opportunities for capability improvement. The major ILI technology providers, together with pipeline operator team members, reviewed the TDC sample inventory and developed a series of ILI performance tests illustrating one of multiple possible research objectives, culminating in 16-inch and 24-inch nominal diameter test strings. The ILI technology providers proposed appropriate inspection tools based on the types of the integrity threats in the test strings, a series of pull tests of the provided ILI tools were performed, and the technology providers delivered reports of integrity anomaly location and dimensions for performance evaluation. Quantitative measures of detection and sizing performance were confidentially disclosed to the individual ILI technology providers. For instances where ILI predictions were outside of claimed performance, the vendors were given a limited sample of actual defect data to enable re-analysis, thus demonstrating the potential for improved integrity assessment with validation measurements. In this paper, an evaluation of the ILI data obtained from repeated pull-through testing on the 16 and 24-inch pipeline strings at the TDC is performed. The resulting data was aligned, analyzed, and compared to truth data and the findings of the evaluation are presented.


2014 ◽  
Vol 16 (3) ◽  
pp. 263-280 ◽  
Author(s):  
Elisabeth E. Bennett

The Problem Initial explorations of virtual human resource development (VHRD) were published in the 12(6) issue of Advances, but these articles were only an initial step toward conceptualization. New perspectives on VHRD have developed over the past 4 years, particularly about human resource development’s (HRD) role in the development of new technology. The Solution This article provides a brief overview of existing published literature on VHRD, offers new conceptualizations of HRD’s role with technology development, and introduces the articles in this issue that advance their own new perspectives. This article argues that HRD must adopt new skills and develop explanatory models for growing organizational learning capacity in virtual work. The Stakeholders This article is of interest to practitioners and managers who lead technology projects and work within technology-enabled professional environments, as well as scholars interested in studying VHRD.


2016 ◽  
Vol 14 (2) ◽  
pp. 152-166 ◽  
Author(s):  
Joanne E. McNeish ◽  
Anthony Francescucci ◽  
Ummaha Hazra

Purpose The next phase of hardware technology development is focused on alternative ways to manage and store consumers’ personal content. However, even consumers who have adopted Cloud-based services have demonstrated a reluctance to move all of their personal content into the Cloud and continue to resist giving up local hard drives. This paper aims to investigate the characteristics of local hard drives and the Cloud that lead to simultaneous use. Design/methodology/approach This paper uses content analysis of online comments and ten depth interviews with simultaneous users of local hard drives and the Cloud. Findings Three factors influence the resistance to giving up local hard drives. Simultaneous users utilize local hard drives as a redundancy system and as a way to ensure the permanence of their digital content. They are unsure of the Cloud’s ability to support their content creation, management and storage activities (task-technology fit). Research limitations/implications Study findings are based on qualitative methods and thus the results cannot be considered conclusive. Practical implications The authors speculate that it is unlikely that Cloud-only will fully replace hard drives until these factors are understood and addressed by information technology developers. Cloud service providers may not be aware of how little that users understand the Cloud. In contrast to their certainty and confidence in local hard drives, simultaneous users are confused as to what the Cloud is and how it functions. This uncertainty exacerbates their risk perception and need for control. Originality/value This is the first study exploring simultaneous use of local hard drives and the Cloud with a view to understanding this behaviour in terms of the relative advantage of the incumbent technology over the new technology.


Author(s):  
JT Maximov ◽  
GV Duncheva ◽  
IM Amudjev ◽  
AP Anchev ◽  
N Ganev

Bolted joint railroad is the subject matter of this paper. Rail joint elements are subjected to cyclic and impact loads as a result of the passage of trains, which causes the origination and growth of fatigue cracks occurring, in most cases, around the bolt holes. Fatigue failure around rail-end-bolt holes is particularly dangerous because it leads to derailment of trains and, consequently, to inevitable accidents. Moreover, the cracking at rail-ends, which starts from bolt hole surface, causes premature rails replacement. The presence of residual compressive hoop stresses around the bolted holes, which is achieved by prestressing of these holes, extends the fatigue life of bolted joint railroads. This article presents an innovative technology for pre-stressing of rail-end-bolt holes, implemented on a vertical machining centre of Revolver vertical (RV) type. Two consecutive operations are involved in the manufacturing technology process: formation of the hole by drilling, reaming and making of a chamfer through a new combined cutting tool; cold hole working by spherical motion cold working through a new tool equipment, which minimizes the axial force on the reverse stroke. The new technology introduces beneficial residual compressive stresses around the bolted holes thereby preventing the fatigue cracks growth and increasing the fatigue life of these openings.


Author(s):  
Hyungtae Kim ◽  
Geonho Kim ◽  
Yunrong Li ◽  
Jinyong Jeong ◽  
Youngdae Kim

Abstract Static Random Access Memory (SRAM) has long been used for a new technology development vehicle because it is sensitive to process defects due to its high density and minimum feature size. In addition, failure location can be accurately predicted because of the highly structured architecture. Thus, fast and accurate Failure Analysis (FA) of the SRAM failure is crucial for the success of new technology learning and development. It is often quite time consuming to identify defects through conventional physical failure analysis techniques. In this paper, we present an advanced defect identification methodology for SRAM bitcell failures with fast speed and high accuracy based on the bitcell transistor analog characteristics from special design for test (DFT) features, Direct Bitcell Access (DBA). This technique has the advantage to shorten FA throughput time due to a time efficient test method and an intuitive failure analysis method based on Electrical Failure Analysis (EFA) without destructive analysis. In addition, all the defects in a wafer can be analyzed and improved simultaneously utilizing the proposed defect identification methodology. Some successful case studies are also discussed to demonstrate the efficiency of the proposed defect identification methodology.


2009 ◽  
Vol 1201 ◽  
Author(s):  
Jae-Kwan Kim ◽  
Jun Young Kim ◽  
Seung-Cheol Han ◽  
Joon Seop Kwak ◽  
Ji-Myon Lee

AbstractThe etch rate and surface morphology of Zn-containing oxide and HfO2 films after wet chemical etching were investigated. ZnO could be easily etched using each acid tested in this study, specifically sulfuric, formic, oxalic, and HF acids. The etch rate of IGZO was strongly dependent on the etchant used, and the highest measured etch rate (500 nm/min) was achieved using buffered oxide etchant at room temperature. The etch rate of IGZO was drastically increased when sulfuric acid at concentration greater than 1.5 molar was used. Furthermore, etching of HfO2 films by BF acid proceeded through lateral widening and merging of the initial irregular pits.


Sign in / Sign up

Export Citation Format

Share Document