Oxygen Activity across a YSZ Electrolyte Visualized by Optical Spectroscopic Probes

2021 ◽  
Vol MA2021-03 (1) ◽  
pp. 46-46
Author(s):  
Adrian Robles-Fernandez ◽  
Rosa Isabel Merino ◽  
Alodia Orera ◽  
Miguel Laguna-Bercero
Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 417
Author(s):  
Wenkui Yang ◽  
Jian Yang ◽  
Yanqiu Shi ◽  
Zhijun Yang ◽  
Fubin Gao ◽  
...  

In this paper, the influence of the Fe2O3 addition amount on the dephosphorization of hot metal at 1623 K with the slag of the low basicity (CaO/SiO2) of about 1.5 was investigated by using high-temperature laboratorial experiments. With increasing the Fe2O3 addition amount from 5 to 30 g, the contents of [C], [Si], [Mn] and [P] in the hot metal at the end of dephosphorization are decreased and the corresponding removal ratios increase. In dephosphorization slags, the phosphorus mainly exists in the form of the nCa2SiO4–Ca3(PO4)2 solid solution in the phosphorus-rich phase and the value of coefficient n decreases from 20 to 1. Furthermore, the oxygen potential and activity at the interface between the slag and hot metal are increased. When the oxygen potential and the oxygen activity at the interface are greater than 0.72 × 10−12 and 7.1 × 10−3, respectively, the dephosphorization ratio begins to increase rapidly. When the Fe2O3 addition amount is increased to 30 g, the ratio of the Fe2O3 addition amount to theoretical calculation consumption is around 175%, and the dephosphorization ratio reaches the highest value of 83.3%.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 744
Author(s):  
Christian Rodenbücher ◽  
Christo Guguschev ◽  
Carsten Korte ◽  
Sebastian Bette ◽  
Kristof Szot

In recent decades, the behavior of SrTiO3 upon annealing in reducing conditions has been under intense academic scrutiny. Classically, its conductivity can be described using point defect chemistry and predicting n-type or p-type semiconducting behavior depending on oxygen activity. In contrast, many examples of metallic behavior induced by thermal reduction have recently appeared in the literature, challenging this established understanding. In this study, we aim to resolve this contradiction by demonstrating that an initially insulating, as-received SrTiO3 single crystal can indeed be reduced to a metallic state, and is even stable against room temperature reoxidation. However, once the sample has been oxidized at a high temperature, subsequent reduction can no longer be used to induce metallic behavior, but semiconducting behavior in agreement with the predictions of point defect chemistry is observed. Our results indicate that the dislocation-rich surface layer plays a decisive role and that its local chemical composition can be changed depending on annealing conditions. This reveals that the prediction of the macroscopic electronic properties of SrTiO3 is a highly complex task, and not only the current temperature and oxygen activity but also the redox history play an important role.


2021 ◽  
Vol 40 (1) ◽  
pp. 53-65
Author(s):  
Li Sun ◽  
Weiping Yan

Abstract More attention has been paid to the exfoliation of oxide scale on high-temperature heating surface of utility boiler. The oxidation mechanism of HCM12A steel in supercritical water is proposed and the growth of oxide film is simulated. The duplex scale contains an outer magnetite layer and an inner Cr-rich spinel layer. According to the data of Backhaus and Töpfer, the diffusion coefficient values of iron in magnetite layer are discussed and the function of R V, R I {R}_{\text{I}} for oxygen activity can be used for calculation of iron diffusion coefficients in Cr-rich spinel layer. Based on Wagner’s oxidation theory, the oxidation rate constants of HCM12A are calculated at 500 and 600°C in supercritical water, compared with experimental data of the relevant literatures. The oxygen activities at the interfaces of alloy/Cr-rich spinel oxide and magnetite/supercritical water are estimated. The simulation results of weight gain are matched with the test data. The iron diffusion mechanisms inside the magnetite layer and the Cr-rich spinel layer are analyzed. The iron diffusion coefficient at the interface of Cr-rich spinel/magnetite is discontinuous, while the oxygen activity is continuous in the whole double layer. The thickness of oxide scale on inner tube walls of the final superheater coils (T91) of a 600 MW supercritical boiler is calculated by using the calculation method provided by the paper. The modeling results, the measured data, and the calculation results by the method are compared. Accurate calculation of the thickness of the inner and outer oxide scales can provide a necessary basis for predicting the stress and exfoliation of oxide scales.


1994 ◽  
Vol 369 ◽  
Author(s):  
Sanjeev Aggarwal ◽  
Rudiger Dieckmann

AbstractCation diffusion in the spinel solid solution (Fe1-xTix)3-δO4 (0≤ x ≤ 0.3) was investigated at 1200 ºC as a function of oxygen activity, aO2 and cationic composition, x. At different cationic compositions, cation tracer diffusion coefficients, D*Me of Me = Fe and Ti were measured as a function of oxygen activity. Plots of log DMe vs. loga0 show V-shaped curves, indicating that different types of point defects prevail at high anc low oxygen activities. Thermogravimetric experiments were conducted, using a high resolution microbalance, to determine the deviation from stoichiometry in (Fe1-xTix)3-δO4 at 1200 °C. δversus log aO2 curves are S-shaped. An analysis of the oxygen activity dependences of thecation diffusion coefficients and the deviation from stoichiometry with regardto the point defect structure suggests that at high oxygen activities cation vacancies are the predominant defects governing the deviation from stoichiometry and the diffusion ofcations. At low oxygen activities, and at small values of x, cation interstitials determine the deviation from stoichiometry, while they dominate for 0 ≤ x ≤ 0.3 inthe cation diffusion.


Author(s):  
Hong Yi Kenneth Tan ◽  
Jong Dae Baek ◽  
Chen-Nan Sun ◽  
Jun Wei ◽  
Seong Hyuk Lee ◽  
...  

2014 ◽  
Vol 39 (24) ◽  
pp. 12894-12903 ◽  
Author(s):  
Seung-Young Park ◽  
Jee Hyun Ahn ◽  
Chang-Woo Jeong ◽  
Chan Woong Na ◽  
Rak-Hyun Song ◽  
...  

2000 ◽  
Vol 654 ◽  
Author(s):  
Y. L. Yang ◽  
C. L. Chen ◽  
G. P. Luo ◽  
C. W. Chu ◽  
A. J. Jacobson

AbstractThe cathodic kinetic processes on a highly oriented LSCO thin film electrode supported on YSZ(100) surface were studied with a 3-probe ac impedance method under varying bias potential and annealing temperatures. Three distinctive features observed in the impedance spectra were assigned to contributions from the ionic conduction of the YSZ electrolyte, the ionic transfer at the LSCO/YSZ interface, and the oxygen exchange on the LSCO electrode surface. The changes of the three features with respect to the annealing history and bias potential were measured. The impedance data were analyzed using an equivalent circuit model: (RelCel)(RinterfaceQinterface)(RsurfCsurf).


Author(s):  
W.T. Ju ◽  
S.H. Hong

Abstract The atmospheric pressure plasma spray processes for functional layers of the tubular solid oxide fuel cell are developed to build a fuel cell structure consisting of air electrode, ceramic electrolyte, and fuel electrode. Further more the characteristics of each film are also investigated. The layers of LSM (La0.65Sr0.35MnO3) air electrode and Ni/8YSZ fuel electrode have porosities of 23 ~32 % sufficient for supplying fuel and oxidant gases efficiently to electrochemical reaction interfaces. The measured electrical conductivities of the electrodes are higher than 90 S/cm at 1000 °C, which satisfy the requirement as the current collecting electrodes. The YSZ electrolyte film has a high ionic conductivity of 0.07 S/cm at 1000 °C, but shows a bit too porous to block the oxygen molecule penetration through it. A unit tubular SOFC is fabricated by the optimized plasma spray processes for depositing each functional film and forming a porous cylindrical supporting tube of the cell, and turns out to have a promising capability of electricity generation.


Sign in / Sign up

Export Citation Format

Share Document