scholarly journals Polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca2+ signaling by differentially modulating STIM1 and STIM2

2012 ◽  
Vol 303 (3) ◽  
pp. C308-C317 ◽  
Author(s):  
Jaladanki N. Rao ◽  
Navneeta Rathor ◽  
Ran Zhuang ◽  
Tongtong Zou ◽  
Lan Liu ◽  
...  

Early epithelial restitution occurs as a consequence of intestinal epithelial cell (IEC) migration after wounding, and its defective regulation is implicated in various critical pathological conditions. Polyamines stimulate intestinal epithelial restitution, but their exact mechanism remains unclear. Canonical transient receptor potential-1 (TRPC1)-mediated Ca2+ signaling is crucial for stimulation of IEC migration after wounding, and induced translocation of stromal interaction molecule 1 (STIM1) to the plasma membrane activates TRPC1-mediated Ca2+ influx and thus enhanced restitution. Here, we show that polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca2+ signaling by altering the ratio of STIM1 to STIM2. Increasing cellular polyamines by ectopic overexpression of the ornithine decarboxylase (ODC) gene stimulated STIM1 but inhibited STIM2 expression, whereas depletion of cellular polyamines by inhibiting ODC activity decreased STIM1 but increased STIM2 levels. Induced STIM1/TRPC1 association by increasing polyamines enhanced Ca2+ influx and stimulated epithelial restitution, while decreased formation of the STIM1/TRPC1 complex by polyamine depletion decreased Ca2+ influx and repressed cell migration. Induced STIM1/STIM2 heteromers by polyamine depletion or STIM2 overexpression suppressed STIM1 membrane translocation and inhibited Ca2+ influx and epithelial restitution. These results indicate that polyamines differentially modulate cellular STIM1 and STIM2 levels in IECs, in turn controlling TRPC1-mediated Ca2+ signaling and influencing cell migration after wounding.

2015 ◽  
Vol 309 (9) ◽  
pp. G759-G767 ◽  
Author(s):  
Hee Kyoung Chung ◽  
Navneeta Rathor ◽  
Shelley R. Wang ◽  
Jian-Ying Wang ◽  
Jaladanki N. Rao

Early mucosal restitution occurs as a consequence of epithelial cell migration to resealing of superficial wounds after injury. Our previous studies show that canonical transient receptor potential-1 (TRPC1) functions as a store-operated Ca2+ channel (SOC) in intestinal epithelial cells (IECs) and plays an important role in early epithelial restitution by increasing Ca2+ influx. Here we further reported that RhoA, a small GTP-binding protein, interacts with and regulates TRPC1, thus enhancing SOC-mediated Ca2+ entry (SOCE) and epithelial restitution after wounding. RhoA physically associated with TRPC1 and formed the RhoA/TRPC1 complexes, and this interaction increased in stable TRPC1-transfected IEC-6 cells (IEC-TRPC1). Inactivation of RhoA by treating IEC-TRPC1 cells with exoenzyme C3 transferase (C3) or ectopic expression of dominant negative RhoA (DNMRhoA) reduced RhoA/TRPC1 complexes and inhibited Ca2+ influx after store depletion, which was paralleled by an inhibition of cell migration over the wounded area. In contrast, ectopic expression of wild-type (WT)-RhoA increased the levels of RhoA/TRPC1 complexes, induced Ca2+ influx through activation of SOCE, and promoted cell migration after wounding. TRPC1 silencing by transfecting stable WT RhoA-transfected cells with siRNA targeting TRPC1 (siTRPC1) reduced SOCE and repressed epithelial restitution. Moreover, ectopic overexpression of WT-RhoA in polyamine-deficient cells rescued the inhibition of Ca2+ influx and cell migration induced by polyamine depletion. These findings indicate that RhoA interacts with and activates TRPC1 and thus stimulates rapid epithelial restitution after injury by inducing Ca2+ signaling.


2006 ◽  
Vol 290 (4) ◽  
pp. G782-G792 ◽  
Author(s):  
Jaladanki N. Rao ◽  
Oleksandr Platoshyn ◽  
Vera A. Golovina ◽  
Lan Liu ◽  
Tongtong Zou ◽  
...  

An increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) results from Ca2+ release from intracellular stores and extracellular Ca2+ influx through Ca2+-permeable ion channels and is crucial for initiating intestinal epithelial restitution to reseal superficial wounds after mucosal injury. Capacitative Ca2+ entry (CCE) induced by Ca2+ store depletion represents a major Ca2+ influx mechanism, but the exact molecular components constituting this process remain elusive. This study determined whether canonical transient receptor potential (TRPC)1 served as a candidate protein for Ca2+-permeable channels mediating CCE in intestinal epithelial cells and played an important role in early epithelial restitution. Normal intestinal epithelial cells (the IEC-6 cell line) expressed TRPC1 and TPRC5 and displayed typical records of whole cell store-operated Ca2+ currents and CCE generated by Ca2+ influx after depletion of intracellular stores. Induced TRPC1 expression by stable transfection with the TRPC1 gene increased CCE and enhanced cell migration during restitution. Differentiated IEC-Cdx2L1 cells induced by forced expression of the Cdx2 gene highly expressed endogenous TRPC1 and TRPC5 and exhibited increased CCE and cell migration. Inhibition of TRPC1 expression by small interfering RNA specially targeting TRPC1 not only reduced CCE but also inhibited cell migration after wounding. These findings strongly suggest that TRPC1 functions as store-operated Ca2+ channels and plays a critical role in intestinal epithelial restitution by regulating CCE and intracellular [Ca2+]cyt.


2010 ◽  
Vol 299 (3) ◽  
pp. C579-C588 ◽  
Author(s):  
Jaladanki N. Rao ◽  
Navneeta Rathor ◽  
Tongtong Zou ◽  
Lan Liu ◽  
Lan Xiao ◽  
...  

Early epithelial restitution is an important repair modality in the gut mucosa and occurs as a consequence of epithelial cell migration. Canonical transient receptor potential-1 (TRPC1) functions as a store-operated Ca2+ channel (SOCs) in intestinal epithelial cells (IECs) and regulates intestinal restitution, but the exact upstream signals initiating TRPC1 activation after mucosal injury remain elusive. Stromal interaction molecule 1 (STIM1) is a single membrane-spanning protein and is recently identified as essential components of SOC activation. The current study was performed to determine whether STIM1 plays a role in the regulation of intestinal epithelial restitution by activating TRPC1 channels. STIM1 translocation to the plasma membrane increased after wounding, which was followed by an increase in IEC migration to reseal wounds. Increased STIM1 levels at the plasma membrane by overexpressing EF-hand mutant STIM1 enhanced Ca2+ influx through SOCs and stimulated IEC migration after wounding. STIM1 interacted with TRPC1 and formed STIM1/TRPC1 complex, whereas inactivation of STIM1 by STIM1 silencing decreased SOC-mediated Ca2+ influx and inhibited epithelial restitution. In cells overexpressing EF-hand mutant STIM1, TRPC1 silencing also decreased STIM1/TRPC1 complex, reduced SOC-mediated Ca2+ influx, and repressed cell migration after wounding. Our findings demonstrate that induced STIM1 translocation to the plasma membrane promotes IEC migration after wounding by enhancing TRPC1-mediated Ca2+ signaling and provide new insight into the mechanism of intestinal epithelial restitution.


2018 ◽  
Vol 315 (6) ◽  
pp. C793-C802 ◽  
Author(s):  
Mohammad Shahidullah ◽  
Amritlal Mandal ◽  
Nicholas A. Delamere

Lens ion homeostasis is crucial in maintaining water content and, in turn, refractive index and transparency of the multicellular syncytium-like structure. New information is emerging on the regulation of ion transport in the lens by mechanisms that rely on transient receptor potential vanilloid (TRPV) ion channels. We found recently that TRPV1 activation leads to Ca2+/PKC-dependent ERK1/2 signaling. Here, we show that the TRPV1 agonist capsaicin (100 nM) and hyperosmotic solution (350 vs. 300 mosM) each caused an increase of bumetanide-inhibitable Rb uptake by intact porcine lenses and Na-K-2Cl cotransporter 1 (NKCC1) phosphorylation in the lens epithelium. The TRPV1 antagonist A889425 (1 µM) abolished the increases of Rb uptake and NKCC1 phosphorylation in response to hyperosmotic solution. Exposing lenses to hyperosmotic solution in the presence of MEK/ERK inhibitor U0126 (10 µM) or the with-no-lysine kinase (WNK) inhibitor WNK463 (1 µM) also prevented NKCC1 phosphorylation and the Rb uptake responses to hyperosmotic solution. WNK463 did not prevent the increase in ERK1/2 phosphorylation that occurs in response to capsaicin or hyperosmotic solution, suggesting that ERK1/2 activation occurs before WNK activation in the sequence of signaling events. Taken together, the evidence indicates that activation of TRPV1 is a critical early step in a signaling mechanism that responds to a hyperosmotic stimulus, possibly lens shrinkage. By activating ERK1/2 and WNK, TRPV1 activation leads to NKCC1 phosphorylation and stimulation of NKCC1-mediated ion transport.


Sign in / Sign up

Export Citation Format

Share Document