scholarly journals Role of ubiquitin-proteasome degradation pathway in biogenesis efficiency of β-cell ATP-sensitive potassium channels

2005 ◽  
Vol 289 (5) ◽  
pp. C1351-C1359 ◽  
Author(s):  
Fei-Fei Yan ◽  
Chia-Wei Lin ◽  
Etienne A. Cartier ◽  
Show-Ling Shyng

ATP-sensitive potassium (KATP) channels of pancreatic β-cells mediate glucose-induced insulin secretion by linking glucose metabolism to membrane excitability. The number of plasma membrane KATP channels determines the sensitivity of β-cells to glucose stimulation. The KATP channel is formed in the endoplasmic reticulum (ER) on coassembly of four inwardly rectifying potassium channel Kir6.2 subunits and four sulfonylurea receptor 1 (SUR1) subunits. Little is known about the cellular events that govern the channel's biogenesis efficiency and expression. Recent studies have implicated the ubiquitin-proteasome pathway in modulating surface expression of several ion channels. In this work, we investigated whether the ubiquitin-proteasome pathway plays a role in the biogenesis efficiency and surface expression of KATP channels. We provide evidence that, when expressed in COS cells, both Kir6.2 and SUR1 undergo ER-associated degradation via the ubiquitin-proteasome system. Moreover, treatment of cells with proteasome inhibitors MG132 or lactacystin leads to increased surface expression of KATP channels by increasing the efficiency of channel biogenesis. Importantly, inhibition of proteasome function in a pancreatic β-cell line, INS-1, that express endogenous KATP channels also results in increased channel number at the cell surface, as assessed by surface biotinylation and whole cell patch-clamp recordings. Our results support a role of the ubiquitin-proteasome pathway in the biogenesis efficiency and surface expression of β-cell KATP channels.

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Xaioyun Guo ◽  
Haifeng Yin ◽  
Yi Chen ◽  
Lei Li ◽  
Jing Li ◽  
...  

Necroptosis has emerged as a new form of programmed cell death implicated in a number of pathological conditions such as ischemic injury, neurodegenerative disease, and viral infection. Recent studies indicate that TGFβ-activated kinase 1 (TAK1) is nodal regulator of necroptotic cell death, but the underlying molecular regulatory mechanisms remain elusive. Here we reported that TAK1 regulates necroptotic signaling as well as caspase 8 activation through both NFκB-dependent and -independent mechanisms. Inhibition of TAK1 promoted TNFα-induced necroptosis through the induction of RIP1 phosphorylation/activation and necrosome formation, in the presence of ongoing caspase activation. Further, inhibition of TAK1 triggered two caspase 8 activation pathways through the induction of RIP1-FADD-caspase 8 complex as well as FLIP cleavage/degradation. Mechanistically, our data uncovered an essential role of the adaptor protein TRADD in caspase 8 activation and necrosome formation triggered by TAK1 inhibition. Moreover, ablation of the deubiqutinase CYLD prevented both apoptotic and necroptotic signaling induced by TAK1 inhibition, whereas deletion of the E3 ubiquitin ligase TRAF2 had the opposite effect. Finally, blocking the ubiquitin-proteasome pathway prevented the degradation of key necroptotic signaling proteins and necrosome formation. Thus we identified novel regulatory mechanisms underling the critical role of TAK1 in necroptotic signaling through regulation of multiple cell death checkpoints. Targeting key components of the necroptotic pathway (e.g., TRADD and CYLD) and the ubiquitin-proteasome pathway may represent novel therapeutic strategies for pathological conditions driven by necroptosis.


Zygote ◽  
2005 ◽  
Vol 13 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Xin Tan ◽  
An Peng ◽  
Yong-Chao Wang ◽  
Yue Wang ◽  
Qing-Yuan Sun

The role of the ubiquitin-proteasome pathway (UPP) in mitosis is well known. However, its role in meiotic division is still poorly documented, especially in the activation of mammalian oocytes. In this study, the role of proteasome in the spontaneous and parthenogenetic activation of rat oocytes was investigated. We found that ALLN, an inhibitor of proteasome, when applied to metaphase II oocytes, inhibited spontaneous activation, blocked extrusion of the second polar body (PB) and caused the withdrawal of the partially extruded second PB. ALLN also inhibited the parthenogenetic activation induced by cycloheximide, but had no effect on the formation of pronuclei in activated eggs. In metaphase and anaphase, ubiquitin and proteasome localized to the meiotic spindle, concentrating on both sides of the oocyte–second PB boundary during PB extrusion. This pattern of cellular distribution suggests that UPP may have a role in regulating nuclear division and cytokinesis. Ubiquitin was seen to form a ring around the pronucleus, whereas proteasome was evenly distributed in the pronuclear region. Taken together, our results indicate that (1) UPP is required for the transitions of oocytes from metaphase II to anaphase II and from anaphase II to the end of meiosis; and (2) the UPP plays a role in cytokinesis of the second meiotic division.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Zenglin Cai ◽  
Xinzhi Zhang ◽  
Yongjin Zhang ◽  
Xiuming Li ◽  
Jing Xu ◽  
...  

Paeoniflorin (PF) is the major active ingredient in the traditional Chinese medicine Radix. It plays a neuroprotective role by regulating autophagy and the ubiquitin-proteasome degradation pathway. In this study, we found PF significantly reduced cell damage caused by MPP+, returning cells to normal state. Cell viability significantly improved after 24 h exposure to RAPA and PF in the MPP+ group (allP<0.01). CAT and SOD activities were significantly decreased after PF and RAPA treatment, compared with MPP+ (P<0.001). In addition, MPP+ activated both LC3-II and E1; RAPA increased LC3-II but inhibited E1. PF significantly upregulated both LC3-II (autophagy) and E1 (ubiquitin-proteasome pathway) expression (P<0.001), promoted degradation ofα-synuclein, and reduced cell damage. We show MPP+ enhanced immunofluorescence signal of intracellularα-synuclein and LC3. Fluorescence intensity ofα-synuclein decreased after PF treatment. In conclusion, these data show PF reversed the decline of proteasome activity caused by MPP+ and significantly upregulated both autophagy and ubiquitin-proteasome pathways, promoted the degradation ofα-synuclein, and reduced cell damage. These findings suggest PF is a potential therapeutic medicine for neurodegenerative diseases.


2014 ◽  
Vol 76 ◽  
pp. 77-85 ◽  
Author(s):  
Inès Karmous ◽  
Abdelilah Chaoui ◽  
Khadija Jaouani ◽  
David Sheehan ◽  
Ezzedine El Ferjani ◽  
...  

2008 ◽  
Vol 2 (4) ◽  
pp. 262-266 ◽  
Author(s):  
Didier Attaix ◽  
Lydie Combaret ◽  
Daniel Béchet ◽  
Daniel Taillandier

Sign in / Sign up

Export Citation Format

Share Document