Mutant hERG channel traffic jam. Focus on “Pharmacological correction of long QT-linked mutations in KCNH2 (hERG) increases the trafficking of Kv11.1 channels stored in the transitional endoplasmic reticulum”

2013 ◽  
Vol 305 (9) ◽  
pp. C916-C918 ◽  
Author(s):  
Ramon J. Ayon ◽  
Ruby A. Fernandez ◽  
Jason X.-J. Yuan
2013 ◽  
Vol 305 (9) ◽  
pp. C919-C930 ◽  
Author(s):  
Jennifer L. Smith ◽  
Allison R. Reloj ◽  
Parvathi S. Nataraj ◽  
Daniel C. Bartos ◽  
Elizabeth A. Schroder ◽  
...  

KCNH2 encodes Kv11.1 and underlies the rapidly activating delayed rectifier K+ current ( IKr) in the heart. Loss-of-function KCNH2 mutations cause the type 2 long QT syndrome (LQT2), and most LQT2-linked missense mutations inhibit the trafficking of Kv11.1 channels. Drugs that bind to Kv11.1 and block IKr (e.g., E-4031) can act as pharmacological chaperones to increase the trafficking and functional expression for most LQT2 channels (pharmacological correction). We previously showed that LQT2 channels are selectively stored in a microtubule-dependent compartment within the endoplasmic reticulum (ER). We tested the hypothesis that pharmacological correction promotes the trafficking of LQT2 channels stored in this compartment. Confocal analyses of cells expressing the trafficking-deficient LQT2 channel G601S showed that the microtubule-dependent ER compartment is the transitional ER. Experiments with E-4031 and the protein synthesis inhibitor cycloheximide suggested that pharmacological correction promotes the trafficking of G601S stored in this compartment. Treating cells in E-4031 or ranolazine (a drug that blocks IKr and has a short half-life) for 30 min was sufficient to cause pharmacological correction. Moreover, the increased functional expression of G601S persisted 4–5 h after drug washout. Coexpression studies with a dominant-negative form of Rab11B, a small GTPase that regulates Kv11.1 trafficking, prevented the pharmacological correction of G601S trafficking from the transitional ER. These data suggest that pharmacological correction quickly increases the trafficking of LQT2 channels stored in the transitional ER via a Rab11B-dependent pathway, and we conclude that the pharmacological chaperone activity of drugs like ranolazine might have therapeutic potential.


2000 ◽  
Vol 15 (6) ◽  
pp. 584-584 ◽  
Author(s):  
Sabine Jahr ◽  
Thorsten Lewalter ◽  
Rolf-Dieter Hesch ◽  
Berndt L�deritz ◽  
Sabine Englisch

2010 ◽  
Vol 26 (8) ◽  
pp. 417-422 ◽  
Author(s):  
Jiangfang Lian ◽  
Na Huang ◽  
JunBo Zhou ◽  
ShiJun Ge ◽  
XiaoYan Huang ◽  
...  

2020 ◽  
Vol 6 (14) ◽  
pp. eaay4472 ◽  
Author(s):  
Anna Oliveras ◽  
Clara Serrano-Novillo ◽  
Cristina Moreno ◽  
Alicia de la Cruz ◽  
Carmen Valenzuela ◽  
...  

The potassium channel Kv7.1 associates with the KCNE1 regulatory subunit to trigger cardiac IKs currents. Although the Kv7.1/KCNE1 complex has received much attention, the subcellular compartment hosting the assembly is the subject of ongoing debate. Evidence suggests that the complex forms either earlier in the endoplasmic reticulum or directly at the plasma membrane. Kv7.1 and KCNE1 mutations, responsible for long QT syndromes, impair association and traffic, thereby altering IKs currents. We found that Kv7.1 and KCNE1 do not assemble in the first stages of their biogenesis. Data support an unconventional secretory pathway for Kv7.1-KCNE1 that bypasses Golgi. This route targets channels to endoplasmic reticulum–plasma membrane junctions, where Kv7.1-KCNE1 assemble. This mechanism helps to resolve the ongoing controversy about the subcellular compartment hosting the association. Our results also provide new insights into IKs channel localization at endoplasmic reticulum–plasma membrane junctions, highlighting an alternative anterograde trafficking mechanism for oligomeric ion channels.


2011 ◽  
Vol 100 (3) ◽  
pp. 427a
Author(s):  
Jennifer L. Smith ◽  
Parvathi Nataraj ◽  
Craig T. January ◽  
Brian P. Delisle

Sign in / Sign up

Export Citation Format

Share Document