Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers

2004 ◽  
Vol 287 (2) ◽  
pp. C246-C256 ◽  
Author(s):  
Henry Jay Forman ◽  
Jon M. Fukuto ◽  
Martine Torres

Except for the role of NO in the activation of guanylate cyclase, which is well established, the involvement of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in signal transduction remains controversial, despite a large body of evidence suggestive of their participation in a variety of signaling pathways. Several problems have limited their acceptance as signaling molecules, with the major one being the difficulty in identifying the specific targets for each pathway and the chemical reactions supporting reversible oxidation of these signaling components, consistent with a second messenger role for ROS and RNS. Nevertheless, it has become clear that cysteine residues in the thiolate (i.e., ionized) form that are found in some proteins can be specific targets for reaction with H2O2 and RNS. This review focuses on the chemistry of the reversible oxidation of those thiolates, with a particular emphasis on the critical thiolate found in protein tyrosine phosphatases as an example.

2021 ◽  
Vol 28 ◽  
Author(s):  
Francisca Rivas ◽  
Carlos Poblete-Aro ◽  
María Elsa Pando ◽  
María José Allel ◽  
Valentina Fernandez ◽  
...  

: Aging is defined as the functional loss of tissues and organs over time. This is a biological, irreversible, progressive, and universal process that results from genetic and environmental factors, such as diet, physical activity, smoking, harmful alcohol consumption, and exposure to toxins, among others. Aging is a consequence of molecular and cellular damage built up over time. This damage begins with a gradual decrease in physical and mental capacity, thus increasing the risk of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Neuronal, functional, and structural damage can be explained by an imbalance among free radicals, reactive oxygen species, reactive nitrogen species, and antioxidants, which finally lead to oxidative stress. Due to the key role of free radicals, reactive oxygen species, and reactive nitrogen species, antioxidant therapy may reduce the oxidative damage associated with neurodegeneration. Exogenous antioxidants are molecules that may help maintain the balance between the formation and elimination of free radicals, thus protecting the cell from their toxicity. Among them, polyphenols are a broad group of secondary plant metabolites with potent antioxidant properties. Here, we review several studies that show the potential role of polyphenol consumption to prevent, or slow down, harmful oxidative processes linked to neurodegenerative disorders.


Nanoscale ◽  
2021 ◽  
Author(s):  
Rachael Knoblauch ◽  
Chris Geddes

While the utility of reactive oxygen species in photodynamic therapies for both cancer treatments and antimicrobial applications has received much attention, the inherent potential of reactive nitrogen species (RNS) including...


2021 ◽  
Author(s):  
Cristina Parisi ◽  
Mariacristina Failla ◽  
Aurore Fraix ◽  
Luca Menilli ◽  
Francesca Moret ◽  
...  

The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) as “unconventional” therapeutics with precise spatiotemporal control by using light stimuli may open entirely new horizons for innovative...


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 466
Author(s):  
Rachid Skouta

Maintaining the physiological level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the body is highly important in the fight against radical species in the context of human health [...]


Sign in / Sign up

Export Citation Format

Share Document