Primary culture of duck salt gland. II. Neurohormonal stimulation of active transport

1985 ◽  
Vol 249 (1) ◽  
pp. C41-C47 ◽  
Author(s):  
R. J. Lowy ◽  
D. C. Dawson ◽  
S. A. Ernst

Primary cultures of structurally polarized sheets of avian salt gland secretory cells were mounted in Lucite chambers for transmural electrophysiological analysis. Transmural resistance values increased during the first 3 days of culture to 293 +/- 35 omega X cm2 and then decreased slowly thereafter. There was little short-circuit current (Isc) in the absence of secretagogues. Serosal addition of either carbachol or epinephrine resulted in a Isc consistent with positive charge flow from mucosa to serosa, thus demonstrating that these cell layers were capable of active ion transport in response to either cholinergic or adrenergic neurohormonal stimulation. Serosal ouabain or furosemide abolished the response to either agonist, while theophylline enhanced the response. Receptor specificity for the electrical responses was shown by selective inhibition of carbachol- and epinephrine-induced Isc by atropine and propranolol, respectively. The results demonstrate that these primary epithelial cell cultures are capable of active ion transport and are sensitive to known inhibitors of secretory transport, and suggest that intracellular coupling mechanisms for hormonal control are retained in culture. These cultures should be useful for studying mechanisms of ion secretory transport and their regulatory control.

1989 ◽  
Vol 256 (6) ◽  
pp. R1184-R1191
Author(s):  
R. J. Lowy ◽  
D. C. Dawson ◽  
S. A. Ernst

Confluent sheets formed from primary culture of avian salt gland secretory cells exhibit a short-circuit current (Isc) in response to cholinergic and beta-adrenergic stimulation [Lowy, R. J., D. C. Dawson, and S. A. Ernst. Am J. Physiol. 249 (Cell Physiol. 18): C41-C47, 1985]. To establish the ionic basis for the Isc, transmural fluxes of 22Na and 36Cl were measured. Under short-circuit conditions there was little net flux of either ion in the absence of agonists. Addition of carbachol elevated net serosal-to-mucosal Cl flux to 1.71 mu eq.h-1.cm-2, whereas a smaller increase to 0.85 mu eq.h-1.cm-2 occurred with isoproterenol. Neither agonist altered net Na flux. The stimulated Isc accounted for 70% of the net Cl flux induced by carbachol and nearly 100% of that induced by isoproterenol. Replacement of Cl by gluconate or Na by choline abolished (carbachol) or greatly reduced (isoproterenol) the Isc, which could be restored in a dose-dependent fashion by ion restitution. Active ion transport was preferentially inhibited by basal (vs. apical) addition of ouabain, furosemide, or barium. The results provide evidence that cholinergic and beta-adrenergic agonists elicit active transmural Cl secretion. They further suggest that transport is dependent on the Na+-K+-adenosine-triphosphatase, a Na-Cl cotransport process, and a basal K conductance, all features of a secondary active Cl secretory mechanism.


1987 ◽  
Vol 253 (6) ◽  
pp. R801-R808 ◽  
Author(s):  
R. J. Lowy ◽  
J. H. Schreiber ◽  
S. A. Ernst

Avian salt glands are considered to be under the control of cholinergic nerve fibers. Here we report evidence that vasoactive intestinal peptide (VIP) also regulates ion transport. Nerve fibers stained immunocytochemically with anti-VIP were distributed throughout the tissue within the peritubular connective tissue and were in close proximity to the secretory tubules. VIP applied to primary cultures of the secretory cells elicited active ion transport as assayed by short-circuit current (Isc) analysis. The mucosal-to-serosal positive Isc was produced in a dose-dependent fashion [(EC50) = 3.1 X 10(-9) M], was potentiated by theophylline, and was inhibited by either ouabain or furosemide. This Isc was independent of activation by cholinergic agonists. VIP also increased ouabain-sensitive respiration 14-18% in acutely isolated cells from salt-stressed and unstressed animals. These data demonstrate for the first time that VIP is present in the avian salt gland and can act as a secretagogue by directly affecting the secretory cells. In addition, the results provide evidence for direct control of ion transport by an adenosine 3',5'-cyclic monophosphate-linked neurohormone in both adult unstressed and fully salt-stressed animals.


1987 ◽  
Vol 252 (6) ◽  
pp. C670-C676 ◽  
Author(s):  
R. J. Lowy ◽  
S. A. Ernst

Adrenergic stimulation of transmural ion transport was identified and characterized in primary cultures of avian salt gland. Adrenergic activation was mediated by beta-receptors since stimulation of the short-circuit current (Isc) was blocked by propranolol but not phentolamine. The Isc's elicited by isoproterenol, epinephrine, and norepinephrine were dose dependent, with respective EC50 values of 1.5 X 10(-8) M, 5.0 X 10(-6) M, and 1.1 X 10(-5) M. The apparent Ki for propranolol inhibition after isoproterenol stimulation was 7.5 X 10(-10) M. 8-Br cyclic AMP (8-Br cAMP) and forskolin-elicited Isc's that were insensitive to propranolol, were potentiated by theophylline, and inhibited by furosemide or ouabain. Isoproterenol also induced an increase in ouabain-sensitive respiration in acutely dispersed cells from salt-stressed juvenile or unstressed adult animals, but not in fully salt-stressed adults. The data indicate that, in addition to the well-established cholinergic receptors, beta-adrenergic receptors can control ion transport in these glands. Furthermore, the results suggest for the first time that an intracellular effector pathway involving cAMP is present.


2010 ◽  
Vol 299 (1) ◽  
pp. R92-R100 ◽  
Author(s):  
Jens Berger ◽  
Martin Hardt ◽  
Wolfgang G. Clauss ◽  
Martin Fronius

A thin liquid layer covers the lungs of air-breathing vertebrates. Active ion transport processes via the pulmonary epithelial cells regulate the maintenance of this layer. This study focuses on basolateral Cl− uptake mechanisms in native lungs of Xenopus laevis and the involvement of the Na+/K+/2 Cl− cotransporter (NKCC) and HCO3−/Cl− anion exchanger (AE), in particular. Western blot analysis and immunofluorescence staining revealed the expression of the NKCC protein in the Xenopus lung. Ussing chamber experiments demonstrated that the NKCC inhibitors (bumetanide and furosemide) were ineffective at blocking the cotransporter under basal conditions, as well as under pharmacologically stimulated Cl−-secreting conditions (forskolin and chlorzoxazone application). However, functional evidence for the NKCC was detected by generating a transepithelial Cl− gradient. Further, we were interested in the involvement of the HCO3−/Cl− anion exchanger to transepithelial ion transport processes. Basolateral application of DIDS, an inhibitor of the AE, resulted in a significantly decreased the short-circuit current (ISC). The effect of DIDS was diminished by acetazolamide and reduced by increased external HCO3− concentrations. Cl− secretion induced by forskolin was decreased by DIDS, but this effect was abolished in the presence of HCO3−. These experiments indicate that the AE at least partially contributes to Cl− secretion. Taken together, our data show that in Xenopus lung epithelia, the AE, rather than the NKCC, is involved in basolateral Cl− uptake, which contrasts with the common model for Cl− secretion in pulmonary epithelia.


2000 ◽  
Vol 279 (2) ◽  
pp. C461-C479 ◽  
Author(s):  
Daniel C. Devor ◽  
Robert J. Bridges ◽  
Joseph M. Pilewski

Forskolin, UTP, 1-ethyl-2-benzimidazolinone (1-EBIO), NS004, 8-methoxypsoralen (Methoxsalen; 8-MOP), and genistein were evaluated for their effects on ion transport across primary cultures of human bronchial epithelium (HBE) expressing wild-type (wt HBE) and ΔF508 (ΔF-HBE) cystic fibrosis transmembrane conductance regulator. In wt HBE, the baseline short-circuit current ( I sc) averaged 27.0 ± 0.6 μA/cm2 ( n = 350). Amiloride reduced this I sc by 13.5 ± 0.5 μA/cm2 ( n = 317). In ΔF-HBE, baseline I sc was 33.8 ± 1.2 μA/cm2 ( n = 200), and amiloride reduced this by 29.6 ± 1.5 μA/cm2 ( n = 116), demonstrating the characteristic hyperabsorption of Na+ associated with cystic fibrosis (CF). In wt HBE, subsequent to amiloride, forskolin induced a sustained, bumetanide-sensitive I sc(Δ I sc = 8.4 ± 0.8 μA/cm2; n = 119). Addition of acetazolamide, 5-( N-ethyl- N-isopropyl)-amiloride, and serosal 4,4′-dinitrostilben-2,2′-disulfonic acid further reduced I sc, suggesting forskolin also stimulates HCO3 − secretion. This was confirmed by ion substitution studies. The forskolin-induced I scwas inhibited by 293B, Ba2+, clofilium, and quinine, whereas charybdotoxin was without effect. In ΔF-HBE the forskolin I sc response was reduced to 1.2 ± 0.3 μA/cm2 ( n = 30). In wt HBE, mucosal UTP induced a transient increase in I sc (Δ I sc = 15.5 ± 1.1 μA/cm2; n = 44) followed by a sustained plateau, whereas in ΔF-HBE the increase in I sc was reduced to 5.8 ± 0.7 μA/cm2 ( n = 13). In wt HBE, 1-EBIO, NS004, 8-MOP, and genistein increased I sc by 11.6 ± 0.9 ( n = 20), 10.8 ± 1.7 ( n = 18), 10.0 ± 1.6 ( n = 5), and 7.9 ± 0.8 μA/cm2( n = 17), respectively. In ΔF-HBE, 1-EBIO, NS004, and 8-MOP failed to stimulate Cl− secretion. However, addition of NS004 subsequent to forskolin induced a sustained Cl−secretory response (2.1 ± 0.3 μA/cm2, n = 21). In ΔF-HBE, genistein alone stimulated Cl− secretion (2.5 ± 0.5 μA/cm2, n = 11). After incubation of ΔF-HBE at 26°C for 24 h, the responses to 1-EBIO, NS004, and genistein were all potentiated. 1-EBIO and genistein increased Na+ absorption across ΔF-HBE, whereas NS004 and 8-MOP had no effect. Finally, Ca2+-, but not cAMP-mediated agonists, stimulated K+ secretion across both wt HBE and ΔF-HBE in a glibenclamide-dependent fashion. Our results demonstrate that pharmacological agents directed at both basolateral K+ and apical Cl− conductances directly modulate Cl−secretion across HBE, indicating they may be useful in ameliorating the ion transport defect associated with CF.


1984 ◽  
Vol 56 (4) ◽  
pp. 868-877 ◽  
Author(s):  
M. Knowles ◽  
G. Murray ◽  
J. Shallal ◽  
F. Askin ◽  
V. Ranga ◽  
...  

Bioelectric properties and ion transport of excised human segmental/subsegmental bronchi were measured in specimens from 40 patients. Transepithelial electric potential difference (PD), short-circuit current (Isc), and conductance (G), averaged 5.8 mV (lumen negative), 51 microA X cm-2, and 9 mS X cm-2, respectively. Na+ was absorbed from lumen to interstitium under open- and short-circuit conditions. Cl- flows were symmetrical under short-circuit conditions. Isc was abolished by 10(-4) M ouabain. Amiloride inhibited Isc (the concentration necessary to achieve 50% of the maximal effect = 7 X 10(-7) M) and abolished net Na+ transport. PD and Isc were not reduced to zero by amiloride because a net Cl- secretion was induced that reflected a reduction in Cl- flow in the absorptive direction (Jm----sCl-). Acetylcholine (10(-4) M) induced an electrically silent, matched flow of Na+ (1.7 mueq X cm-1 X h-1) and Cl- (1.9 mueq X cm-12 X h-1) toward the lumen. This response was blocked by atropine. Phenylephrine (10(-5) M) did not affect bioelectric properties or unidirectional ion flows, whereas isoproterenol (10(-5) M) induced a small increase in Isc (10%) without changing net ion flows significantly. We conclude that 1) Na+ absorption is the major active ion transport across excised human bronchi, 2) Na+ absorption is both amiloride and ouabain sensitive, 3) Cl- secretion can be induced by inhibition of the entry of luminal Na+ into the epithelia, and 4) cholinergic more than adrenergic agents modulate basal ion flow, probably by affecting gland output.


1997 ◽  
Vol 200 (3) ◽  
pp. 643-648 ◽  
Author(s):  
M Chamberlin ◽  
C Gibellato ◽  
R Noecker ◽  
E Dankoski

Ion transport and metabolism in the posterior midgut before, during and after the molt to the fifth instar of the tobacco hornworm Manduca sexta were investigated. In situ measurements reveal that the transepithelial potential difference of the posterior midgut falls during the molting process. This finding was confirmed by in vitro experiments in which it was demonstrated that both the transepithelial potential and the short-circuit current are lower in molting fourth instars compared with feeding fourth instars. The short-circuit current increases after ecdysis, with a maximal rate being achieved approximately 4 h after the molt. Resumption of feeding after the molt is not necessary to initiate this increase in active ion transport. The metabolic organization of the tissue also changes during the molting process. The maximal activities of glycolytic enzymes and 3-hydroxyacyl-CoA dehydrogenase, an enzyme of lipid ss-oxidation, decrease during the molting process and increase after ecdysis. Although citrate synthase activity, an index of maximal aerobic capacity, decreases during the molt and increases again after ecdysis, tissue respiration is the same in feeding fourth instars and molting larvae. This result indicates that a greater percentage of maximal aerobic capacity is used during molting and that energy may be diverted to cell proliferation and differentiation and away from the support of active ion transport at this time.


1997 ◽  
Vol 25 (3) ◽  
pp. 271-277
Author(s):  
Henning F. Bjerregaard ◽  
Brian Faurskov

An epithelial cell line (A6) derived from the distal tubule of toad kidney, was used to study the effect of cadmium (Cd2+) on the increase in active ion transport induced by antidiuretic hormone (ADH). Addition of Cd2+ (1mM) to the basolateral solution of A6 epithelia generated an immediate and transient increase in active ion transport, measured as short circuit current (SCC). This increase was not affected by prior addition of ADH. However, there was a distinct inhibition of ADH-induced stimulation of SCC in epithelia pre-treated with Cd2+. Since cAMP serves as an intracellular messenger for ADH by increasing the ion permeability of the apical membrane in A6 epithelial cells, the effects of Cd2+ on enzymes involved in cAMP metabolism were measured. The results showed that Cd2+ markedly inhibits cAMP production by inhibiting adenylate cyclase (which had been stimulated with forskolin, magnesium or a non-hydrolysed GTP-analog), indicating that Cd2+ inhibits the catalytic subunit of adenylate cyclase. Furthermore, degradation of cAMP by phosphodiesterase was not stimulated by Cd2+, also suggesting that the mechanism by which Cd2+ inhibits the ADH-induced ion transport could be through inhibition of adenylate cyclase. Taken together, these results indicate that, in addition to the well-known toxic effect on the proximal tubule, Cd2+ could also have an effect on the distal part of the kidney, where the important hormonal regulation of salt and water homeostasis takes place.


1987 ◽  
Vol 62 (6) ◽  
pp. 2241-2245 ◽  
Author(s):  
J. R. Yankaskas ◽  
J. T. Gatzy ◽  
R. C. Boucher

Evaporation of water from upper airway surfaces increases surface liquid osmolarity. We studied the effects of raised osmolarity of the solution bathing the luminal surface of excised canine tracheal epithelium. Osmolarity was increased by adding NaCl or mannitol. NaCl addition induced a concentration-dependent fall in short-circuit current and a rise in transepithelial conductance (-33% and +14% per 100 mosM, respectively). Unidirectional isotopic fluxes of 22Na, 36Cl, and [14C]mannitol were measured in short-circuited tissues in the base-line state and after addition of NaCl or mannitol to an isotonic mucosal solution. NaCl addition (75 mM) caused a 50% increase in conductance (G) and a parallel increase in [14C]mannitol permeability (Pmann), indicating an increase in paracellular permeability. Net Cl- secretion was reduced 50%, and net Na+ absorption was unchanged despite an increased chemical gradient for absorption, indicating an inhibition of active ion transport. Mannitol addition (150 mM) abolished net Na+ absorption but did not increase G or Pmann or change net Cl- secretion. These results suggest that responses to increased tracheal surface liquid osmolarity during spontaneous breathing may occur in both the cellular (inhibition of active Na+ and Cl- transport) and paracellular (increased [14C]mannitol permeability) compartments of the mucosa.


1994 ◽  
Vol 267 (1) ◽  
pp. R156-R163 ◽  
Author(s):  
H. V. Carey ◽  
U. L. Hayden ◽  
K. E. Tucker

Three-week-old piglets were used to study the effects of short-term fasting on jejunal ion transport. A 48-h fast significantly reduced mucosal weight, villus height, and crypt depth. Fasting increased basal short-circuit current (Isc), which reflects active ion transport, and total tissue conductance (Gt) of muscle-stripped jejunal sheets mounted in Ussing chambers. Increases in Isc evoked by carbachol, serotonin, histamine, prostaglandin E2, or Escherichia coli heat-stable enterotoxin were significantly greater in the fasted piglets. Isc responses to mucosal D-glucose were also enhanced by the fast. Under basal conditions, unidirectional and net fluxes of Na+ and Cl-, as well as serosal-to-mucosal inulin fluxes, were significantly increased in fasted piglets. In fed piglets, carbachol increased net Cl- secretion by stimulating serosal-to-mucosal Cl- flux; Gt was not affected. In fasted piglets, carbachol increased net Cl- secretion by inhibiting mucosal-to-serosal fluxes with no effect on serosal-to-mucosal fluxes. In addition, carbachol significantly inhibited mucosal-to-serosal Na+ fluxes and reduced Gt in this group. Thus a 48-h fast increased unidirectional and net ion fluxes in piglet jejunum and enhanced ion transport responses to secretory agonists. The mechanism by which carbachol stimulated net Cl- secretion was also altered by the fast. These results suggest that the absence of luminal nutrition changes the ion transport characteristics of the jejunal epithelium.


Sign in / Sign up

Export Citation Format

Share Document