Vasoactive intestinal peptide stimulates ion transport in avian salt gland

1987 ◽  
Vol 253 (6) ◽  
pp. R801-R808 ◽  
Author(s):  
R. J. Lowy ◽  
J. H. Schreiber ◽  
S. A. Ernst

Avian salt glands are considered to be under the control of cholinergic nerve fibers. Here we report evidence that vasoactive intestinal peptide (VIP) also regulates ion transport. Nerve fibers stained immunocytochemically with anti-VIP were distributed throughout the tissue within the peritubular connective tissue and were in close proximity to the secretory tubules. VIP applied to primary cultures of the secretory cells elicited active ion transport as assayed by short-circuit current (Isc) analysis. The mucosal-to-serosal positive Isc was produced in a dose-dependent fashion [(EC50) = 3.1 X 10(-9) M], was potentiated by theophylline, and was inhibited by either ouabain or furosemide. This Isc was independent of activation by cholinergic agonists. VIP also increased ouabain-sensitive respiration 14-18% in acutely isolated cells from salt-stressed and unstressed animals. These data demonstrate for the first time that VIP is present in the avian salt gland and can act as a secretagogue by directly affecting the secretory cells. In addition, the results provide evidence for direct control of ion transport by an adenosine 3',5'-cyclic monophosphate-linked neurohormone in both adult unstressed and fully salt-stressed animals.

1985 ◽  
Vol 249 (1) ◽  
pp. C41-C47 ◽  
Author(s):  
R. J. Lowy ◽  
D. C. Dawson ◽  
S. A. Ernst

Primary cultures of structurally polarized sheets of avian salt gland secretory cells were mounted in Lucite chambers for transmural electrophysiological analysis. Transmural resistance values increased during the first 3 days of culture to 293 +/- 35 omega X cm2 and then decreased slowly thereafter. There was little short-circuit current (Isc) in the absence of secretagogues. Serosal addition of either carbachol or epinephrine resulted in a Isc consistent with positive charge flow from mucosa to serosa, thus demonstrating that these cell layers were capable of active ion transport in response to either cholinergic or adrenergic neurohormonal stimulation. Serosal ouabain or furosemide abolished the response to either agonist, while theophylline enhanced the response. Receptor specificity for the electrical responses was shown by selective inhibition of carbachol- and epinephrine-induced Isc by atropine and propranolol, respectively. The results demonstrate that these primary epithelial cell cultures are capable of active ion transport and are sensitive to known inhibitors of secretory transport, and suggest that intracellular coupling mechanisms for hormonal control are retained in culture. These cultures should be useful for studying mechanisms of ion secretory transport and their regulatory control.


1987 ◽  
Vol 252 (6) ◽  
pp. C670-C676 ◽  
Author(s):  
R. J. Lowy ◽  
S. A. Ernst

Adrenergic stimulation of transmural ion transport was identified and characterized in primary cultures of avian salt gland. Adrenergic activation was mediated by beta-receptors since stimulation of the short-circuit current (Isc) was blocked by propranolol but not phentolamine. The Isc's elicited by isoproterenol, epinephrine, and norepinephrine were dose dependent, with respective EC50 values of 1.5 X 10(-8) M, 5.0 X 10(-6) M, and 1.1 X 10(-5) M. The apparent Ki for propranolol inhibition after isoproterenol stimulation was 7.5 X 10(-10) M. 8-Br cyclic AMP (8-Br cAMP) and forskolin-elicited Isc's that were insensitive to propranolol, were potentiated by theophylline, and inhibited by furosemide or ouabain. Isoproterenol also induced an increase in ouabain-sensitive respiration in acutely dispersed cells from salt-stressed juvenile or unstressed adult animals, but not in fully salt-stressed adults. The data indicate that, in addition to the well-established cholinergic receptors, beta-adrenergic receptors can control ion transport in these glands. Furthermore, the results suggest for the first time that an intracellular effector pathway involving cAMP is present.


1989 ◽  
Vol 256 (6) ◽  
pp. R1184-R1191
Author(s):  
R. J. Lowy ◽  
D. C. Dawson ◽  
S. A. Ernst

Confluent sheets formed from primary culture of avian salt gland secretory cells exhibit a short-circuit current (Isc) in response to cholinergic and beta-adrenergic stimulation [Lowy, R. J., D. C. Dawson, and S. A. Ernst. Am J. Physiol. 249 (Cell Physiol. 18): C41-C47, 1985]. To establish the ionic basis for the Isc, transmural fluxes of 22Na and 36Cl were measured. Under short-circuit conditions there was little net flux of either ion in the absence of agonists. Addition of carbachol elevated net serosal-to-mucosal Cl flux to 1.71 mu eq.h-1.cm-2, whereas a smaller increase to 0.85 mu eq.h-1.cm-2 occurred with isoproterenol. Neither agonist altered net Na flux. The stimulated Isc accounted for 70% of the net Cl flux induced by carbachol and nearly 100% of that induced by isoproterenol. Replacement of Cl by gluconate or Na by choline abolished (carbachol) or greatly reduced (isoproterenol) the Isc, which could be restored in a dose-dependent fashion by ion restitution. Active ion transport was preferentially inhibited by basal (vs. apical) addition of ouabain, furosemide, or barium. The results provide evidence that cholinergic and beta-adrenergic agonists elicit active transmural Cl secretion. They further suggest that transport is dependent on the Na+-K+-adenosine-triphosphatase, a Na-Cl cotransport process, and a basal K conductance, all features of a secondary active Cl secretory mechanism.


2000 ◽  
Vol 279 (2) ◽  
pp. C461-C479 ◽  
Author(s):  
Daniel C. Devor ◽  
Robert J. Bridges ◽  
Joseph M. Pilewski

Forskolin, UTP, 1-ethyl-2-benzimidazolinone (1-EBIO), NS004, 8-methoxypsoralen (Methoxsalen; 8-MOP), and genistein were evaluated for their effects on ion transport across primary cultures of human bronchial epithelium (HBE) expressing wild-type (wt HBE) and ΔF508 (ΔF-HBE) cystic fibrosis transmembrane conductance regulator. In wt HBE, the baseline short-circuit current ( I sc) averaged 27.0 ± 0.6 μA/cm2 ( n = 350). Amiloride reduced this I sc by 13.5 ± 0.5 μA/cm2 ( n = 317). In ΔF-HBE, baseline I sc was 33.8 ± 1.2 μA/cm2 ( n = 200), and amiloride reduced this by 29.6 ± 1.5 μA/cm2 ( n = 116), demonstrating the characteristic hyperabsorption of Na+ associated with cystic fibrosis (CF). In wt HBE, subsequent to amiloride, forskolin induced a sustained, bumetanide-sensitive I sc(Δ I sc = 8.4 ± 0.8 μA/cm2; n = 119). Addition of acetazolamide, 5-( N-ethyl- N-isopropyl)-amiloride, and serosal 4,4′-dinitrostilben-2,2′-disulfonic acid further reduced I sc, suggesting forskolin also stimulates HCO3 − secretion. This was confirmed by ion substitution studies. The forskolin-induced I scwas inhibited by 293B, Ba2+, clofilium, and quinine, whereas charybdotoxin was without effect. In ΔF-HBE the forskolin I sc response was reduced to 1.2 ± 0.3 μA/cm2 ( n = 30). In wt HBE, mucosal UTP induced a transient increase in I sc (Δ I sc = 15.5 ± 1.1 μA/cm2; n = 44) followed by a sustained plateau, whereas in ΔF-HBE the increase in I sc was reduced to 5.8 ± 0.7 μA/cm2 ( n = 13). In wt HBE, 1-EBIO, NS004, 8-MOP, and genistein increased I sc by 11.6 ± 0.9 ( n = 20), 10.8 ± 1.7 ( n = 18), 10.0 ± 1.6 ( n = 5), and 7.9 ± 0.8 μA/cm2( n = 17), respectively. In ΔF-HBE, 1-EBIO, NS004, and 8-MOP failed to stimulate Cl− secretion. However, addition of NS004 subsequent to forskolin induced a sustained Cl−secretory response (2.1 ± 0.3 μA/cm2, n = 21). In ΔF-HBE, genistein alone stimulated Cl− secretion (2.5 ± 0.5 μA/cm2, n = 11). After incubation of ΔF-HBE at 26°C for 24 h, the responses to 1-EBIO, NS004, and genistein were all potentiated. 1-EBIO and genistein increased Na+ absorption across ΔF-HBE, whereas NS004 and 8-MOP had no effect. Finally, Ca2+-, but not cAMP-mediated agonists, stimulated K+ secretion across both wt HBE and ΔF-HBE in a glibenclamide-dependent fashion. Our results demonstrate that pharmacological agents directed at both basolateral K+ and apical Cl− conductances directly modulate Cl−secretion across HBE, indicating they may be useful in ameliorating the ion transport defect associated with CF.


1989 ◽  
Vol 257 (6) ◽  
pp. L361-L365 ◽  
Author(s):  
J. H. Widdicombe ◽  
I. F. Ueki ◽  
D. Emery ◽  
D. Margolskee ◽  
J. Yergey ◽  
...  

Release of cyclooxygenase products from primary cultures of dog or human tracheal epithelium was measured by radioimmunoassay. In both species, bradykinin, platelet-activating factor (PAF), and A23187 (a calcium ionophore) caused increases in the rate of release of prostaglandin (PG) E2 and smaller increases in PGF2 alpha, 6-keto-PGF1 alpha, and thromboxane B2 output. Isoproterenol, vasoactive intestinal peptide (VIP), methacholine, and leukotrienes C4 and D4 had no effect on release of these cyclooxygenase products. Gas chromatography-mass spectrometry showed that the ratio of PGE2 to PGD2 released from dog cells by A23187 was 30:1. Short-circuit current across dog cells was stimulated by bradykinin, A23187, PAF, VIP, methacholine, and isoproterenol. Only the responses to bradykinin and A23187 were reduced by pretreatment with indomethacin.


1983 ◽  
Vol 245 (5) ◽  
pp. C388-C396 ◽  
Author(s):  
J. H. Widdicombe ◽  
I. T. Nathanson ◽  
E. Highland

The "loop" diuretics MK-196, bumetanide, piretanide, and furosemide are all potent inhibitors of Cl transport by the dog's tracheal epithelium. In short-circuited tissues, the drugs caused significant decreases in both unidirectional Cl fluxes and in the net flux of Cl toward the lumen; the change in net Cl flux was not significantly different from the change in short-circuit current. The drugs had no effect on active Na absorption. All drugs caused a significant fall in tissue conductance. All drugs, except MK-196, were more potent from the serosal bath; MK-196 was equipotent from either side of the tissue. In experiments with isolated cells, the diuretics caused no significant changes in intracellular Na and K concentrations, a fall in intracellular Cl concentration, and approximately equal falls in Na and Cl influxes. These results suggest that the site of action of these drugs is on a basolateral linked Na-Cl entry process. Additional evidence for such a linked entry process was provided by experiments in which removal of Cl reduced Na influx and removal of Na reduced Cl influx.


1990 ◽  
Vol 258 (2) ◽  
pp. C243-C247 ◽  
Author(s):  
S. M. O'Grady ◽  
P. J. Wolters

The effects of a novel antisecretory peptide (CAP) isolated from porcine heart and vasoactive intestinal peptide (VIP) on ion transport were investigated in the winter flounder intestine. Partially purified CAP caused a two- to sixfold increase in the serosa-negative short-circuit current (Isc) with no significant change in tissue conductance. CAP significantly inhibited the serosal-to-mucosal (S-M) unidirectional Cl flux without affecting either Na or Rb transepithelial fluxes. The Isc after the addition of CAP was completely inhibited by 0.1 microM atriopeptin III (AP-3), 10 microM bumetanide, and 100 microM 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP). In contrast to the effects of CAP on Isc, VIP decreased the serosa-negative Isc by 40-60%. VIP stimulated the S-M unidirectional Cl flux without affecting transepithelial Na transport. When food was present in the intestine, the basal Isc was occasionally found to be serosa positive, ranging between 10 and 40 microA/cm2. Treatment of tissues exhibiting serosa-positive currents with VIP resulted in an increase (positive direction) in Isc. Addition of CAP to tissues with a serosa-positive Isc or to tissues pretreated with VIP resulted in a serosa-negative Isc.(ABSTRACT TRUNCATED AT 250 WORDS)


2010 ◽  
Vol 299 (1) ◽  
pp. R92-R100 ◽  
Author(s):  
Jens Berger ◽  
Martin Hardt ◽  
Wolfgang G. Clauss ◽  
Martin Fronius

A thin liquid layer covers the lungs of air-breathing vertebrates. Active ion transport processes via the pulmonary epithelial cells regulate the maintenance of this layer. This study focuses on basolateral Cl− uptake mechanisms in native lungs of Xenopus laevis and the involvement of the Na+/K+/2 Cl− cotransporter (NKCC) and HCO3−/Cl− anion exchanger (AE), in particular. Western blot analysis and immunofluorescence staining revealed the expression of the NKCC protein in the Xenopus lung. Ussing chamber experiments demonstrated that the NKCC inhibitors (bumetanide and furosemide) were ineffective at blocking the cotransporter under basal conditions, as well as under pharmacologically stimulated Cl−-secreting conditions (forskolin and chlorzoxazone application). However, functional evidence for the NKCC was detected by generating a transepithelial Cl− gradient. Further, we were interested in the involvement of the HCO3−/Cl− anion exchanger to transepithelial ion transport processes. Basolateral application of DIDS, an inhibitor of the AE, resulted in a significantly decreased the short-circuit current (ISC). The effect of DIDS was diminished by acetazolamide and reduced by increased external HCO3− concentrations. Cl− secretion induced by forskolin was decreased by DIDS, but this effect was abolished in the presence of HCO3−. These experiments indicate that the AE at least partially contributes to Cl− secretion. Taken together, our data show that in Xenopus lung epithelia, the AE, rather than the NKCC, is involved in basolateral Cl− uptake, which contrasts with the common model for Cl− secretion in pulmonary epithelia.


1972 ◽  
Vol 11 (3) ◽  
pp. 855-873
Author(s):  
A. M. LEVINE ◽  
JOAN A. HIGGINS ◽  
R. J. BARRNETT

In response to salt water stress there is a marked increase in the plasma membranes of the epithelial secretory cells of the salt glands of domestic ducklings. In the present study, the fine-structural localization of the acyltransferases involved in synthesis of phospholipids has been investigated in this tissue during this increased biogenesis of plasma membranes. The specific activity of the acyltransferases of the salt gland rose in response to salt stress, and this preceded the rapid increase in weight and cellular differentiation. After the weight increase of the gland became established, the specific activity of the acyltransferases declined, but the total activity remained constant. Salt gland tissue fixed in a mixture of glutaraldehyde and formaldehyde retained 35% of the acyltransferase activity of unfixed tissue. Cytochemical studies of the localization of acyltransferase activity in fixed and unfixed salt gland showed reaction product associated only with the lamellar membranes of the Golgi complex. This localization occurred in partially differentiated cells from salt-stressed glands to the greatest extent; and to only a small extent in cells of control tissue from unstressed salt glands. Omission of substrates resulted in absence of reaction product in association with the Golgi membranes. In addition, vesicles having limiting membranes morphologically similar to the plasma membrane occurred between the Golgi region and the plasma membrane in the partially differentiated cells. The phospholipid component of the plasma membrane appears therefore to be synthesized in association with the Golgi membranes and the membrane packaged at this site from which it moves in the form of vesicles to fuse with the pre-existing plasma membrane.


Toxins ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 351 ◽  
Author(s):  
C. Tse ◽  
Julie In ◽  
Jianyi Yin ◽  
Mark Donowitz ◽  
Michele Doucet ◽  
...  

One of the characteristic manifestations of Shiga-toxin-producing Escherichia coli (E. coli) infection in humans, including EHEC and Enteroaggregative E. coli O104:H4, is watery diarrhea. However, neither Shiga toxin nor numerous components of the type-3 secretion system have been found to independently elicit fluid secretion. We used the adult stem-cell-derived human colonoid monolayers (HCM) to test whether EHEC-secreted extracellular serine protease P (EspP), a member of the serine protease family broadly expressed by diarrheagenic E. coli can act as an enterotoxin. We applied the Ussing chamber/voltage clamp technique to determine whether EspP stimulates electrogenic ion transport indicated by a change in short-circuit current (Isc). EspP stimulates Isc in HCM. The EspP-stimulated Isc does not require protease activity, is not cystic fibrosis transmembrane conductance regulator (CFTR)-mediated, but is partially Ca2+-dependent. EspP neutralization with a specific antibody reduces its potency in stimulating Isc. Serine Protease A, secreted by Enteroaggregative E. coli, also stimulates Isc in HCM, but this current is CFTR-dependent. In conclusion, EspP stimulates colonic CFTR-independent active ion transport and may be involved in the pathophysiology of EHEC diarrhea. Serine protease toxins from E. coli pathogens appear to serve as enterotoxins, potentially significantly contributing to watery diarrhea.


Sign in / Sign up

Export Citation Format

Share Document