Complex response of epithelial cells to inhibition of Na+ transport by amiloride

1988 ◽  
Vol 254 (2) ◽  
pp. C297-C303 ◽  
Author(s):  
R. S. Fisher ◽  
J. W. Lockard

When toad urinary bladder or frog skin epithelia are treated with amiloride, short-circuit current (Isc), which represents the net active transepithelial Na+ transport rate from the apical to basolateral surface, decreases rapidly (2-5 s) to approximately 15-20% of control values and then slowly, over several minutes, continues falling toward zero. The contribution of this second phase of the decline is dependent on the transporting condition of the tissue before administration of amiloride. Attenuation of the second phase was observed if tissues were subjected to a period of transport inhibition. Tissues preincubated in 0 Na+ Ringer solution on the apical surface were returned to control Na+ Ringer, which caused an approximately 25% increase of Isc above control values. Immediate reapplication of amiloride caused Isc to decrease more rapidly than the previous exposure to values near zero, substantially reducing or eliminating the secondary slow decline. After long-term reincubation of tissues in control, 100 mM Na+ solution, another treatment with amiloride indicated that the magnitude of the secondary decline increased in frog skin but not in urinary bladder epithelia. We conclude that the effect of amiloride is complex and may cause additional effects besides simply blocking entry of Na+ into the apical membrane channel, and we suggest that regulatory mechanisms may be invoked in response to transport inhibition.

1983 ◽  
Vol 81 (6) ◽  
pp. 785-803 ◽  
Author(s):  
H Garty ◽  
I S Edelman

Incubation of the mucosal surface of the toad urinary bladder with trypsin (1 mg/ml) irreversibly decreased the short-circuit current to 50% of the initial value. This decrease was accompanied by a proportionate decrease in apical Na permeability, estimated from the change in amiloride-sensitive resistance in depolarized preparations. In contrast, the paracellular resistance was unaffected by trypsinization. Amiloride, a specific blocker of the apical Na channels, prevented inactivation by trypsin. Inhibition of Na transport by substitution of mucosal Na, however, had no effect on the response to trypsin. Trypsinization of the apical membrane was also used to study regulation of Na transport by anti-diuretic hormone (ADH) and aldosterone. Prior exposure of the apical surface to trypsin did not reduce the response to ADH, which indicates that the ADH-induced Na channels were inaccessible to trypsin before addition of the hormone. On the other hand, stimulation of short-circuit current by aldosterone or pyruvate (added to substrate-depleted, aldosterone-repleted bladders) was substantially reduced by prior trypsinization of the apical surface. Thus, the increase in apical Na permeability elicited by aldosterone or substrate involves activation of Na channels that are continuously present in the apical membrane in nonconductive but trypsin-sensitive forms.


1978 ◽  
Vol 235 (4) ◽  
pp. F359-F366 ◽  
Author(s):  
J. Guzzo ◽  
M. Cox ◽  
A. B. Kelley ◽  
I. Singer

The effects of three tetracyclines, demethylchlortetracycline (DMC), minocycline (MNC), and oxytetracycline (OTC), on Na+ transport (measured as short-circuit current) were examined in toad urinary bladders mounted in modified Ussing chambers. During a 1-h incubation period serosal DMC (but not MNC or OTC) inhibited basal Na+ transport, whereas MNC (but not DMC or OTC) inhibited ADH-stimulated Na+ transport. MNC also inhibited cyclic AMP-stimulated Na+ transport. During longer incubation periods all three drugs inhibited basal Na+ transport. The DMC-induced inhibition of basal Na+ transport and the MNC-induced inhibition of ADH-stimulated Na+ transport were paralleled by an inhibition of the active conductance of the bladders. Thus, although all three drugs inhibit basal Na+ transport, only MNC inhibits ADH-stimulated Na+ transport. This effect does not correlate with the known effects of the tetracyclines on ADH-stimulated water flow or with drug-protein binding, and may be related to the greater lipid solubility of MNC.


1977 ◽  
Vol 232 (3) ◽  
pp. F270-F277
Author(s):  
M. Cox ◽  
I. Singer

The characteristics of insulin-induced Na+ transport in the toad urinary bladder were determined and compared to those of aldosterone. Bladders were mounted in modified Ussing chambers, and standard short-circuit current techniques were employed to measure transepithelial Na+ transport. Insulin added to the serosal medium is much more effective than insulin added to the mucosal medium. Serosal insulin concentrations from 10(1) to 10(3) muU/ml increase both the initial rate and the final level of Na+ transport achieved, whereas concentrations from 10(3) to 10(5) muU/ml increase only the initial rate of Na+ transport. Insulin-induced Na+ transport probably does not require glucose. Both insulin- and aldosterone-induced Na+ transport are directly proportional to serosal (but not mucosal) K+ concentration over the physiologic range (2.0-7.0 meq/liter). However, cycloheximide abolishes aldosterone- but not insulin-induced Na+ transport. In addition, insulin stimulates Na+ transport after a maximal response to aldosterone, and aldosterone stimulates Na+ transport after a maximal response to insulin. Thus, although they have several similar characteristics, insulin and aldosterone have at least partially independent mechanisms of action on Na+ transport in the toad urinary bladder.


1983 ◽  
Vol 245 (6) ◽  
pp. F707-F715 ◽  
Author(s):  
C. S. Park ◽  
J. Kipnowski ◽  
D. D. Fanestil

Mucosal addition of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) and some lipid-soluble carbodiimides, agents which are selective for carboxyl groups, irreversibly inhibited Na+ transport as measured by short-circuit current (SCC) in the urinary bladder of the toad. The inhibition of Na+ transport by EEDQ had the following characteristics: 1) the inhibition was accompanied by a significant increase in the transepithelial electrical resistance; 2) the decrease in SCC was accounted for by a comparable decrease in 22Na+ influx without effect on Na+ efflux; 3) amphotericin B produced complete recovery of SCC inhibited with EEDQ but not with antimycin A or ouabain; 4) mucosal EEDQ decreased the amiloride-sensitive reversal of Na+ current that is induced by serosal nystatin in the absence of mucosal Na+; 5) vasopressin and acid mucosal pH caused an increase in SCC in proportion to the SCC remaining after EEDQ inhibition; and 6) Vmax of the SCC was decreased without alteration in the apparent Km for Na+. Based on these characteristics of EEDQ inhibition of Na+ transport, we infer that a carboxyl group of the Na+ channel is involved in the Na+-entry step across the apical membrane of “tight” epithelia. The inhibition of Na+ transport with EEDQ most likely involves closing the Na+ channel through a chemical reaction involving a carboxyl group of the channel.


1975 ◽  
Vol 67 (1) ◽  
pp. 119-125
Author(s):  
P. J. BENTLEY

SUMMARY The electrical potential difference and short-circuit current (scc, reflecting active transmural sodium transport) across the toad urinary bladder in vitro was unaffected by the presence of hypo-osmotic solutions bathing the mucosal (urinary) surface, providing that the transmural flow of water was small. Vasopressin increased the scc across the toad bladder (the natriferic response), but this stimulation was considerably reduced in the presence of a hypo-osmotic solution on the mucosal side, conditions under which water transfer across the membrane was also increased. This inhibition of the natriferic response did not depend on the direction of the water movement, for if the osmotic gradient was the opposite way to that which normally occurs, the response to vasopressin was still reduced. The natriferic response to cyclic AMP was also inhibited in the presence of an osmotic gradient. Aldosterone increased the scc and Na+ transport across the toad bladder but this response was not changed when an osmotic gradient was present. The physiological implications of these observations and the possible mechanisms involved are discussed.


1976 ◽  
Vol 231 (6) ◽  
pp. 1866-1874 ◽  
Author(s):  
LJ Cruz ◽  
TU Biber

Na+ entry across the outer surface of frog skin and transepithelial Na transport were studied simultaneously at different [Na] in either the presence or absence of novobiocin by direct measurements of J12 (unidirectional uptake) and Io (short-circuit current). J12 consisted of two components: one linear, the other saturable. The kinetic parameters of the saturating components in controls were close to the kinetic parameters of overall transepithelial transport (Jm12 = 1.68+/-0.13 mleq cm-2h-1; Io =1.80+/-0.14 mueq cm-2h-1. K12 = 6.02+/-1.27 mM;Kio=6.12+/-1.33 mM). Novobiocin significantly augmented net transepithelial Na transport by increasing J13. J31 remained unaffected. A 1:1 relationship between the saturating component of J12 and Io was observed in both treated and untreated skins at all [Na] tested. (Jm12Iom, k12, and Kio were significantly larger in treated skins, but despite very drastic changes in transport rates, a close correlation between kinetic parameters of entry step and transepithelial transport was maintained. This suggests that the kinetics of transepithelial transport may simply reflect those of the rate-limiting step: the Na entry across the outer barrier of the skin. The results indicate that the linear component of J12 is not involved in transepithelial transport kinetics.


1988 ◽  
Vol 254 (4) ◽  
pp. F547-F553 ◽  
Author(s):  
A. S. Brem ◽  
M. Pacholski ◽  
D. J. Morris

Aldosterone (Aldo) metabolism was examined in the toad bladder. Bladders were incubated with [3H]aldosterone (10(-7) M) for 5 h, 1 h, or 10 min. Tissues were analyzed for metabolites using high-pressure liquid chromatography (HPLC). In separate experiments, Na+ transport was assessed by the short-circuit current (SCC) technique. Following a 5-h tissue incubation, about 25% of the [3H]-aldosterone was converted into metabolites including a polar monosulfate metabolite, 20 beta-dihydroaldo (20 beta-DHAldo), small quantities of 5 beta-reduced products, and a variety of 5 alpha-reduced Aldo products including 5 alpha-DHAldo, 3 alpha,5 alpha-tetrahydroaldo (3 alpha,5 alpha-THAldo), and 3 beta,5 alpha-THAldo. Tissues metabolized approximately 10% of the labeled hormone into the same compounds by 1 h. Measurable quantities of these metabolites were also synthesized by bladders exposed to Aldo for only 10 min and then incubated in buffer for an additional 50 min without Aldo. Bladders pretreated with the spironolactone, K+-canrenoate (3.5 X 10(-4) M), and stimulated with Aldo (10(-7) M) generated a peak SCC 44 +/- 6% of that observed in matched pairs stimulated with Aldo (P less than 0.001; n = 6). K+-canrenoate also markedly diminished [3H]aldosterone metabolism at both 5 and 1 h. Thus, metabolic transformation of Aldo begins prior to hormone-induced increases in Na+ transport. Both the generation of certain metabolites (e.g., 5 alpha-reductase pathway products) and the increase in Na+ transport can be selectively inhibited by K+-canrenoate.


1981 ◽  
Vol 240 (3) ◽  
pp. C103-C105 ◽  
Author(s):  
J. S. Handler ◽  
F. M. Perkins ◽  
J. P. Johnson

Three continuous lines of amphibian epithelial cells form epithelia with a high transepithelial resistance (greater than 4,000 omega . cm2) in culture. The cell lines are TB-M and TB-6c, derived from the urinary bladder of Bufo marinus, and A6, derived from the kidney of Xenopus laevis. Short-circuit current is equivalent to net mucosa-to-serosa sodium transport in two cell lines and slightly exceeds sodium transport in epithelia formed by TB-6c cells. None of the cell lines has an adenylate cyclase response or a transport or permeability response to vasopressin. Water permeability is low in all three cell lines and is not affected by adenosine 3',5–-cyclic monophosphate (cAMP). In the three lines of cells, cAMP and aldosterone each increases short-circuit current with a time course similar to that seen in naturally occurring epithelia. In contrast to the toad urinary bladder and epithelia of line TB-M in which the aldosterone stimulation of short-circuit current is associated with a fall in transepithelial resistance, there is no change in resistance across epithelia of lines TB-6c and A6. There is also a striking difference in the sensitivity of the three lines to inhibition of short-circuit current by amiloride.


1986 ◽  
Vol 87 (3) ◽  
pp. 467-483 ◽  
Author(s):  
T C Cox ◽  
S I Helman

The stoichiometry of pump-mediated Na/K exchange was studied in isolated epithelial sheets of frog skin. 42K influx across basolateral membranes was measured with tissues in a steady state and incubated in either beakers or in chambers. The short-circuit current provided estimates of Na+ influx at the apical membranes of the cells. 42K influx of tissues bathed in Cl- or SO4-Ringer solution averaged approximately 8 microA/cm2. Ouabain inhibited 94% of the 42K influx. Furosemide was without effect on pre-ouabain-treated tissues but inhibited a ouabain-induced and Cl--dependent component of 42K influx. After taking into account the contribution of the Na+ load to the pump by way of basolateral membrane recycling of Na+, the stoichiometry was found to increase from approximately 2 to 6 as the pump-mediated Na+ transport rate increased from 10 to 70 microA/cm2. Extrapolation of the data to low rates of Na+ transport (less than 10 microA/cm2) indicated that the stoichiometry would be in the vicinity of 3:2. As pump-mediated K+ influx saturates with increasing rates of Na+ transport, Na+ efflux cannot be obligatorily coupled to K+ influx at all rates of transepithelial Na+ transport. These results are similar to those of Mullins and Brinley (1969. Journal of General Physiology. 53:504-740) in studies of the squid axon.


1980 ◽  
Vol 239 (2) ◽  
pp. F167-F174
Author(s):  
L. Cohen

The isolated turtle urinary bladder acidifies its mucosal (M) solution, and the rate of acidification (JH) is equivalent to the short-circuit current after Na+ transport is abolished by ouabain. When HCO3(-) is present in the serosal solution it is secreted into M in an electroneutral exchange for absorbed Cl-. The rate of HCO3(-) secretion (JHCO3(-)) can be measured by pH stat titration after JH is nullified by an opposing pH gradient. With use of these methods JH and JHCO3 were measured sequentially in bladdes from control animals and animals fed NaHCO3 (alkalosis) or NH4Cl (acidosis). JH in alkalosis (57 +/- 6 micro A) was ot different from control values (53 +/- 7 micro A). JHCO3, however, was nearly 40% higher in alkalosis (1.63 +/- 0.11 vs. 1.17 +/- 0.14 mu mol x h-1 x 8 cm-2). In contrast, JHCO3 in acidosis was similar to control values (0.89 +/- 0.15 mu mol x h-1 x 8 cm-2) but JH was increased. As judged from Cl- fluxes, neither alkalosis nor acidosis altered the electroneutral coupling between HCO3(-) secretion and Cl- absorption. JH and JHCO3 appear to be independent processes in the turtle bladder that are capable of responding independently to physiologic changes in the acid-base status of the intact animal.


Sign in / Sign up

Export Citation Format

Share Document