Halothane-sensitivity gene and muscle contractile properties in malignant hyperthermia

1989 ◽  
Vol 257 (4) ◽  
pp. C781-C786 ◽  
Author(s):  
E. M. Gallant ◽  
J. R. Mickelson ◽  
B. D. Roggow ◽  
S. K. Donaldson ◽  
C. F. Louis ◽  
...  

Malignant hyperthermia (MH) results from the presence of the halothane-sensitivity gene and is characterized by abnormalities in muscle function. Populations of genetically defined pigs were used to determine the in vivo and in vitro expression of this gene in both the homozygous and the heterozygous condition. On exposure to halothane, isolated muscle bundles from the homozygous halothane-sensitive pigs exhibited decreased tetanus tension and increased tetanus half-relaxation time and contracture and were clearly distinguished from homozygous normal muscles. The heterozygous and homozygous normal muscles were similar in contractile responses except for the occurrence of halothane-induced contractures in the heterozygotes. The heterozygous halothane-negative pigs did not exhibit the characteristic signs of an MH episode in response to halothane succinylcholine, although some metabolic responses were significantly altered (e.g., increased venous partial pressure of CO2 and arterial and venous K+ concentration). Thus the heterozygous pigs were not MH susceptible but did represent a phenotype distinct from the homozygous normal pigs both in vitro and in vivo. These data provide the first convincing evidence for the expression of the halothane-sensitivity gene in heterozygotes.

1999 ◽  
Vol 90 (6) ◽  
pp. 1723-1732. ◽  
Author(s):  
Paul A. Iaizzo ◽  
Brooks A. Johnson ◽  
Kaoru Nagao ◽  
William J. Gallagher

Background Chlorocresols are used as preservatives in numerous commercial drugs that have been shown to induce myoplasmic Ca2+ release; the most potent isoform is 4-chloro-m-cresol. The aims of this study were to (1) examine the in vivo effects of 4-chloro-m-cresol on swine susceptible to malignant hyperthermia and (2) contrast in vivo versus in vitro dose-response curves. Methods Susceptible swine (weight: 38.5 kg+/-3.55 kg) were anesthetized and monitored for variations in physiological responses, including end-tidal CO2, heart rate, blood pressure, blood chemistry, and temperatures. In the first animals studied, 4-chloro-m-cresol, at equivalent cumulative doses of 0.14, 0.28, 0.57, 1.14, 2.27, 4.54, and 9.08 mg/kg (n = 3; 12.5, 25, 50, 100, 200, 400, and 800 micromol) were administered, and in a second group, larger doses were used: 1.14, 3.41, 7.95, 17.04 (n = 4), and/or 35.22 (n = 1) mg/kg (100, 300, 700, 1,500, and/or 3,100 micromol). For comparison, in vitro rectus abdominis muscle preparations obtained from normal and susceptible swine were exposed to 4-chloro-m-cresol, at cumulative concentrations of 6.25, 12.5, 25, 50, 100, 200, 400, 800, and 1,600 micromol; standard caffeine and halothane contracture testing was also performed. Results Episodes of malignant hyperthermia were not triggered in response to administration of low doses of 4-chloro-m-cresol, but transient cardiovascular reactions (e.g., tachycardia, arrhythmias, and hypotension) were observed. Subsequently, episodes in these animals were triggered when halothane (0.87; 1 MAC) and succinylcholine (2 mg/kg) were given. Animals administered the higher doses of 4-chloro-m-cresol all had fulminant episodes of malignant hyperthermia that were fatal, when equivalent cumulative concentrations were greater than 1,500 micromol. The levels of 4-chloro-m-cresol in the plasma rapidly decreased: e.g., 5 min postadministration of the 1,500-micromol dose, the mean plasma level was only 52+/-18 micromol (n = 4). Hemolysis was detected following 4-chloro-m-cresol administration at concentrations > 200 micromol. In vitro, muscle from susceptible animals elicited contractures > 200 mg at 50-micromol bath concentrations of 4-chloro-m-cresol (n = 29), whereas normal muscle did not elicit such contractures until bath concentrations were > 800 micromol (n = 10). Conclusions 4-chloro-m-cresol is a trigger of malignant hyperthermia in susceptible swine, but only when serum concentrations are far above those likely to be encountered in humans. A relatively low concentration of 4-chloro-m-cresol, 50 micromol, is sufficient to activate sarcoplasmic [Ca+2] release in vitro (e.g., contractures); this same bolus dose administered in vivo (0.57 mg/kg) has minimal effects due to the rapid decrease in its plasma levels.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Asensio Gonzalez ◽  
Tinen L. Iles ◽  
Paul A. Iaizzo ◽  
Oliver Bandschapp

Abstract Background Statin intake is associated with muscular side effects, among which the unmasking of latent myopathies and of malignant hyperthermia (MH) susceptibility have been reported. These findings, together with experimental data in small animals, prompt speculation that statin therapy may compromise the performance of skeletal muscle during diagnostic in vitro contracture tests (IVCT). In addition, statins might reduce triggering thresholds in susceptible individuals (MHS), or exacerbate MH progression. We sought to obtain empirical data to address these questions. Methods We compared the responses of 3 different muscles from untreated or simvastatin treated MHS and non-susceptible (MHN) pigs. MHS animals were also invasively monitored for signs of impending MH during sevoflurane anesthesia. Results Muscles from statin treated MHS pigs responded with enhanced in vitro contractures to halothane, while responses to caffeine were unaltered by the treatment. Neither agent elicited contractures in muscles from statin treated MHN pigs. In vivo, end- tide pCO2, hemodynamic evolution, plasma pH, potassium and lactate concentrations consistently pointed to mild acceleration of MH development in statin-treated pigs, whereas masseter spasm and rigor faded compared to untreated MHS animals. Conclusions The diagnostic sensitivity and specificity of the IVCT remains unchanged by a short-term simvastatin treatment in MHS swine. Evidence of modest enhancement in cardiovascular and metabolic signs of MH, as well as masked pathognomonic muscle rigor observed under simvastatin therapy suggest a potentially misleading influence on the clinical presentation of MH. The findings deserve further study to include other statins and therapeutic regimes.


1971 ◽  
Vol 58 (6) ◽  
pp. 620-633 ◽  
Author(s):  
S. L. Kimzey ◽  
J. S. Willis

In two species of hibernators, hamsters and ground squirrels, erythrocytes were collected by heart puncture and the K content of the cells of hibernating individuals was compared with that of awake individuals. The K concentration of hamsters did not decline significantly during each bout of hibernation (maximum period of 5 days) but in long-term bouts in ground squirrels (i.e. more than 5 days) the K concentration of cells dropped significantly. When ground squirrels were allowed to rewarm the K content of cells rose toward normal values within a few hours. Erythrocytes of both hamsters and ground squirrels lose K more slowly than those of guinea pigs (nonhibernators) when stored in vitro for up to 10 days at 5°C. In ground squirrels the rate of loss of K during storage is the same as in vivo during hibernation, and stored cells taken from hibernating ground squirrels also lose K at the same rate. The rate of loss of K from guinea pig cells corresponded with that predicted from passive diffusion unopposed by transport. The actual rate of loss of K from ground squirrel cells was slower than such a predicted rate but corresponded with it when glucose was omitted from the storage medium or ouabain was added to it. Despite the slight loss of K that may occur in hibernation, therefore, the cells of hibernators are more cold adapted than those of a nonhibernating mammal, and this adaptation depends in part upon active transport.


Oxytocin and vasopressin are stored with their binding proteins, the neurophysins, within neurosecretory vesicles in the nerve endings of the mammalian neurohypophysis. Depolarization of the nerve terminals, either by the arrival of a nerve impulse in vivo or by immersion of the gland in solutions of high K+ concentration in vitro , brings about a release of the hormones into the extracellular space. Douglas & Poisner (1964) have shown that this release is dependent on the entry of Ca 2+ into the nerve endings, and have proposed that Ca 2+ is necessary for coupling the stimulus of depolarization to the secretory process. Whereas Douglas (1967) suggests that Ca 2+ plays a part in emptying the neurosecretory vesicles by an exocytotic mechanism, the finding of Smith & Thorn (1965) that Ca 2+ dissociates the hormone-neurophysin complex suggests that secretion may take place by diffusion of the hormones through the vesicular and roteins. A biochemical method of distinguishing between these two mechanisms is to study whether other macromolecular constituents of the neurosecretory vesicles are specifically released by depolarizing stimuli. Fawcett, Powell & Sachs (1968) have previously shown by tracer experiments in dogs that a protein cross-reacting with a rabbit antiserum to bovine neurophysin is released from neurohypophyses stimulated by high K + solutions in vitro or by haemorrhage in vivo , but their technique did not allow a quantitation of the protein in relation to the amount of hormone released. A parallel release of neurophysin and hormone would be expected if exocytosis plays a part in the secretory mechanism.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mario Elkes ◽  
Martin Andonovski ◽  
Daislyn Vidal ◽  
Madison Farago ◽  
Ryan Modafferi ◽  
...  

Barth syndrome is a rare and incurable X-linked (male-specific) genetic disease that affects the protein tafazzin (Taz). Taz is an important enzyme responsible for synthesizing biologically relevant cardiolipin (for heart and skeletal muscle, cardiolipin rich in linoleic acid), a critical phospholipid of mitochondrial form and function. Mutations to Taz cause dysfunctional mitochondria, resulting in exercise intolerance due to skeletal muscle weakness. To date, there has been limited research on improving skeletal muscle function, with interventions focused on endurance and resistance exercise. Previous cell culture research has shown therapeutic potential for the addition of exogenous linoleic acid in improving Taz-deficient mitochondrial function but has not been examined in vivo. The purpose of this study was to examine the influence of supplemental dietary linoleic acid on skeletal muscle function in a rodent model of Barth syndrome, the inducible Taz knockdown (TazKD) mouse. One of the main findings was that TazKD soleus demonstrated an impaired contractile phenotype (slower force development and rates of relaxation) in vitro compared to their WT littermates. Interestingly, this impaired contractile phenotype seen in vitro did not translate to altered muscle function in vivo at the whole-body level. Also, supplemental linoleic acid attenuated, to some degree, in vitro impaired contractile phenotype in TazKD soleus, and these findings appear to be partially mediated by improvements in cardiolipin content and resulting mitochondrial supercomplex formation. Future research will further examine alternative mechanisms of dietary supplemental LA on improving skeletal muscle contractile dysfunction in TazKD mice.


2020 ◽  
Vol 245 (7) ◽  
pp. 620-630 ◽  
Author(s):  
Fangyuan Sun ◽  
Weifang Yuan ◽  
Hao Wu ◽  
Gang Chen ◽  
Yuxia Sun ◽  
...  

Myocardial dysfunction is a prime cause of death in sepsis. This study is to delve into the function of lncRNA KCNQ1OT1 in myocardial injury induced by sepsis. Sepsis-induced myocardial injury model in rat was initiated by intraperitoneally injecting of LPS (10 mg/kg) in vivo, and cardiomyocyte H9c2 was treated with LPS to mimic sepsis in vitro. KCNQ1OT1 and miR-192-5p expressions were detected by qRT-PCR. The cell viability was probed with CCK-8 experiment and the apoptosis of the cardiomyocytes was tested using flow cytometry analysis. Western blot was operated to determine apoptosis-related proteins expressions. ELISA was used to evaluate the levels of TNF-α, IL-6, and IL-1β. Bioinformatics analysis, RT-PCR, dual luciferase reporter assay, and RNA immunoprecipitation experiment were utilized to detect the interrelation of genes. Herein, we proved that KCNQ1OT1 was considerably down-regulated, whereas miR-192-5p was markedly increased in myocardial tissues of septic rats. KCNQ1OT1 interrelated with miR-192-5p, and negatively modulated its expression levels. Overexpression of KCNQ1OT1 or the transfection of miR-192-5p inhibitors greatly facilitated the viability and impeded the apoptosis of H9c2 cardiomyocytes. miR-192-5p paired with the 3ʹUTR of XIAP, and repressed its protein expression, and XIAP was modulated positively by KCNQ1OT1. In conclusion, our work indicates that down-regulation of KCNQ1OT1 advances cardiac injury through regulating miR-192-5p/XIAP axis during sepsis. Impact statement Sepsis-induced cardiomyopathy remains to be a major challenge to health care systems around the globe. There are no known therapies currently available that can cure the disease. This study provides convincing evidence that KCNQ1OT1 could attenuate sepsis-mediated myocardial injury. We further demonstrate that the beneficial function of KCNQ1OT1 was achieved by regulating the miR-192-5p/XIAP axis. We therefore found a new mechanism of cardioprotective effect of KCNQ1OT1, one which also offers a novel theoretical basis for the therapy of sepsis-induced cardiomyopathy.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 258 ◽  
Author(s):  
Can Wang ◽  
Zhuo Ma ◽  
Dong-Ying Yan ◽  
Chang Liu ◽  
Yu Deng ◽  
...  

Synaptic vesicle fusion is mediated by an assembly of soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs), composed of syntaxin 1, soluble NSF-attachment protein (SNAP)-25, and synaptobrevin-2/VAMP-2. Previous studies have suggested that over-exposure to manganese (Mn) could disrupt synaptic vesicle fusion by influencing SNARE complex formation, both in vitro and in vivo. However, the mechanisms underlying this effect remain unclear. Here we employed calpeptin, an inhibitor of calpains, along with a lentivirus vector containing alpha-synuclein (α-Syn) shRNA, to examine whether specific SNAP-25 cleavage and the over-expression of α-Syn disturbed the formation of the SNARE complex in SH-SY5Y cells. After cells were treated with Mn for 24 h, fragments of SNAP-25-N-terminal protein began to appear; however, this effect was reduced in the group of cells which were pre-treated with calpeptin. FM1-43-labeled synaptic vesicle fusion decreased with Mn treatment, which was consistent with the formation of SNARE complexes. The interaction of VAMP-2 and α-Syn increased significantly in normal cells in response to 100 μM Mn treatment, but decreased in LV-α-Syn shRNA cells treated with 100 μM Mn; similar results were observed in terms of the formation of SNARE complexes and FM1-43-labeled synaptic vesicle fusion. Our data suggested that Mn treatment could increase [Ca2+]i, leading to abnormally excessive calpains activity, which disrupted the SNARE complex by cleaving SNAP-25. Our data also provided convincing evidence that Mn could induce the over-expression of α-Syn; when combined with VAMP-2, α-Syn prevented VAMP-2 from joining the SNARE complex cycle.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 789 ◽  
Author(s):  
Mattia Bellan ◽  
Laura Andreoli ◽  
Chiara Mele ◽  
Pier Paolo Sainaghi ◽  
Cristina Rigamonti ◽  
...  

Vitamin D is a pleiotropic secosteroid yielding multiple actions in human physiology. Besides the canonical regulatory activity on bone metabolism, several non-classical actions have been described and the ability of vitamin D to partake in the regulation of the immune system is particularly interesting, though far stronger and convincing evidence has been collected in in vitro as compared to in vivo studies. Whether vitamin D is able to regulate at physiological concentrations the human immune system remains unproven to date. Consequently, it is not established if vitamin D status is a factor involved in the pathogenesis of immune-mediated diseases and if cholecalciferol supplementation acts as an adjuvant for autoimmune diseases. The development of autoimmunity is a heterogeneous process, which may involve different organs and systems with a wide range of clinical implications. In the present paper, we reviewed the current evidences regarding vitamin D role in the pathogenesis and management of different autoimmune diseases.


1992 ◽  
Vol 20 (2) ◽  
pp. 165-168 ◽  
Author(s):  
A. J. McKenzie ◽  
K. G. Couchman ◽  
N. Pollock

In this study we investigated in vitro and in vivo effects of propofol in malignant hyperthermia susceptible (MHS) patients in order to assess the safety of propofol infusion as a non-triggering anaesthetic technique for diagnostic and therapeutic procedures. In vitro, human MHS muscle samples were exposed to propofol and changes in (a) baseline tension and (b) contracture tension on exposure to halothane and caffeine were measured. In vivo, (a) anaesthesia was induced in ten muscle biopsy positive MHS patients with propofol 2.5 mg/kg and (b) anaesthesia was produced in five muscle biopsy positive MHS patients with infusions of propofol up to 10 mg/kg/hr. In vitro, human MHS muscle did not develop contractures with propofol alone. Propofol had no significant effect on contracture development in response to halothane and caffeine. In vivo, no evidence of an MH response was detected following induction or maintenance of anaesthesia with propofol. Our results and literature review are in agreement that propofol is a ‘safe’ induction and maintenance agent in MHS patients. Propofol can be used for muscle biopsy anaesthesia because it does not alter the sensitivity of diagnostic muscle biopsy testing.


Sign in / Sign up

Export Citation Format

Share Document