Regulation of endothelial nitric oxide synthase mRNA, protein, and activity during cell growth

1994 ◽  
Vol 267 (5) ◽  
pp. C1381-C1388 ◽  
Author(s):  
J. F. Arnal ◽  
J. Yamin ◽  
S. Dockery ◽  
D. G. Harrison

Cell growth influences the expression of several important tissue-specific functions. We sought to examine the effect of cell proliferation on nitric oxide (NO) synthase gene expression in cultured aortic bovine endothelial cells. Western and Northern blot analysis revealed three- and sixfold increases in NO synthase protein and mRNA, respectively, in growing compared with growth-arrested cells. The release of nitrogen oxides was also increased in proliferating cells compared with growth-arrested cells, as was the NO synthase activity assessed by L-arginine/L-citrulline conversion. Neither NO synthase inhibitors nor superoxide dismutase affected proliferation or thymidine incorporation, suggesting that increased NO release had no effect on endothelial cell growth. In conclusion, these studies demonstrate that expression of endothelial cell NO synthase is markedly increased in proliferating compared with quiescent nongrowing cells. The mechanisms underlying this and its physiological consequences remain to be defined.

2013 ◽  
Vol 457 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Jihan Talib ◽  
Jair Kwan ◽  
Aldwin Suryo Rahmanto ◽  
Paul K. Witting ◽  
Michael J. Davies

The smoking-associated oxidant hypothiocyanous acid converts active dimeric endothelial cell nitric oxide synthase into its monomer form, decreases enzyme activity and releases Zn2+. This is ascribed to targeting of the critical Zn2+–thiol cluster by this thiol-specific oxidant.


2000 ◽  
Vol 279 (5) ◽  
pp. C1495-C1505 ◽  
Author(s):  
George I. Gorodeski

Estrogen increases baseline transepithelial permeability across CaSki cultures and augments the increase in permeability in response to hypertonic gradients. In estrogen-treated cells, lowering cytosolic calcium abrogated the hypertonicity-induced augmented increase in permeability and decreased baseline permeability to a greater degree than in estrogen-deprived cells. Steady-state levels of cytosolic calcium in estrogen-deprived cells were higher than in estrogen-treated cells. Increases in extracellular calcium increased cytosolic calcium more in estrogen-deprived cells than in estrogen-treated cells. However, in estrogen-treated cells, increasing cytosolic calcium was associated with greater increases in permeability in response to hypertonic gradients than in estrogen-deprived cells. Lowering cytosolic calcium blocked the estrogen-induced increase in nitric oxide (NO) release and in the in vitro conversion of l-[3H]arginine to l-[3H]citrulline. Treatment with estrogen upregulated mRNA of the NO synthase isoform endothelial nitric oxide synthase (eNOS). These results indicate that cytosolic calcium mediates the responses to estrogen and suggest that the estrogen increase in permeability and the augmented increase in permeability in response to hypertonicity involve an increase in NO synthesis by upregulation of the calcium-dependent eNOS.


1999 ◽  
Vol 19 (5) ◽  
pp. 1156-1161 ◽  
Author(s):  
Toyoaki Murohara ◽  
Bernhard Witzenbichler ◽  
Ioakim Spyridopoulos ◽  
Takayuki Asahara ◽  
Bo Ding ◽  
...  

1993 ◽  
Vol 265 (5) ◽  
pp. C1379-C1387 ◽  
Author(s):  
J. S. Pollock ◽  
M. Nakane ◽  
L. D. Buttery ◽  
A. Martinez ◽  
D. Springall ◽  
...  

We have produced specific monoclonal antibodies (MAb) against particulate bovine aortic endothelial nitric oxide synthase. In Western blots, native and cultured bovine aortic endothelial cells as well as cultured bovine microvascular endothelial cells possess immunoreactive NO synthase. In dot blots, MAb H210 and H32 detect 1 ng and 100 pg of purified endothelial NO synthase, respectively. Both antibodies are specific to the endothelial NO synthase and do not cross-react with other known isoforms of NO synthase, namely from the brain, from cytokine/endotoxin-induced macrophages, or from cytokine/endotoxin-induced vascular smooth muscle cells. Immunohistochemical studies demonstrated the specificity of endothelial NO synthase for endothelial cells in various bovine and human tissues. Many types of endothelial cells, macrovascular, microvascular, arterial, and venous were found to possess this specific isoform of NO synthase. Electron microscopy showed the enzyme to be associated with the plasma membrane, membranes of cytoplasmic vesicles, and in the cytoplasm in human umbilical vein endothelial cells. The results demonstrate that particulate endothelial NO synthase is present in a site to act rapidly to produce NO for release into the blood or toward the smooth muscle in many vascular beds.


2007 ◽  
Vol 293 (3) ◽  
pp. H1371-H1383 ◽  
Author(s):  
Xavier F. Figueroa ◽  
Chien-Chang Chen ◽  
Kevin P. Campbell ◽  
David N. Damon ◽  
Kathleen H. Day ◽  
...  

In the microcirculation, longitudinal conduction of vasomotor responses provides an essential means of coordinating flow distribution among vessels in a complex network. Spread of current along the vessel axis can display a regenerative component, which leads to propagation of vasomotor signals over many millimeters; the ionic basis for the regenerative response is unknown. We examined the responses to 10 s of focal electrical stimulation (30 Hz, 2 ms, 30 V) of mouse cremaster arterioles to test the hypothesis that voltage-dependent Na+ (Nav) and Ca2+ channels might be activated in long-distance signaling in microvessels. Electrical stimulation evoked a vasoconstriction at the site of stimulation and a spreading, nondecremental conducted dilation. Endothelial damage (air bubble) blocked conduction of the vasodilation, indicating an involvement of the endothelium. The Nav channel blocker bupivacaine also blocked conduction, and TTX attenuated it. The Nav channel activator veratridine induced an endothelium-dependent dilation. The Nav channel isoforms Nav1.2, Nav1.6, and Nav1.9 were detected in the endothelial cells of cremaster arterioles by immunocytochemistry. These findings are consistent with the involvement of Nav channels in the conducted response. BAPTA buffering of endothelial cell Ca2+ delayed and reduced the conducted dilation, which was almost eliminated by Ni2+, amiloride, or deletion of α1H T-type Ca2+ (Cav3.2) channels. Blockade of endothelial nitric oxide synthase or Ca2+-activated K+ channels also inhibited the conducted vasodilation. Our findings indicate that an electrically induced signal can propagate along the vessel axis via the endothelium and can induce sequential activation of Nav and Cav3.2 channels. The resultant Ca2+ influx activates endothelial nitric oxide synthase and Ca2+-activated K+ channels, triggering vasodilation.


2011 ◽  
Vol 300 (4) ◽  
pp. H1352-H1360 ◽  
Author(s):  
F. Spencer Gaskin ◽  
Kazuhiro Kamada ◽  
Mozow (Yusof) Zuidema ◽  
Allan W. Jones ◽  
Leona J. Rubin ◽  
...  

We previously demonstrated that preconditioning induced by ethanol consumption at low levels [ethanol preconditioning (EPC)] or with 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR-PC) 24 h before ischemia-reperfusion prevents postischemic leukocyte-endothelial cell adhesive interactions (LEI) by a mechanism that is initiated by nitric oxide formed by endothelial nitric oxide synthase. Recent work indicates that 1) ethanol increases the activity of AMP-activated protein kinase (AMPK) and 2) AMPK phosphorylates endothelial nitric oxide synthase at the same activation site seen following EPC (Ser1177). In light of these observations, we postulated that the heterotrimeric serine/threonine kinase, AMPK, may play a role in triggering the development of the anti-inflammatory phenotype induced by EPC. Ethanol was administered to C57BL/6J mice by gavage in the presence or absence of AMPK inhibition. Twenty-four hours later, the numbers of rolling and adherent leukocytes in postcapillary venules of the small intestine were recorded using an intravital microscopic approach. Following 45 min of ischemia, LEI were recorded after 30 and 60 min of reperfusion or at equivalent time points in control animals. Ischemia-reperfusion induced a marked increase in LEI relative to sham-operated control mice. The increase in LEI was prevented by EPC, an effect that was lost with AMPK inhibition during the period of ethanol exposure. Studies conducted in AMPK α1- and α2-knockout mice suggest that the anti-inflammatory effects of AICAR are not dependent on which isoform of the catalytic α-subunit is present because a deficiency of either isoform results in a loss of protection. In sharp contrast, EPC appears to be triggered by an AMPK α2-isoform-dependent mechanism.


Sign in / Sign up

Export Citation Format

Share Document