Heart gap junction preparations reveal hemiplaques by atomic force microscopy

1995 ◽  
Vol 268 (4) ◽  
pp. C968-C977 ◽  
Author(s):  
R. Lal ◽  
S. A. John ◽  
D. W. Laird ◽  
M. F. Arnsdorf

Current structural models of gap junctions indicate two apposed plasma membranes with hexagonally packed hemichannels in each membrane aligning end to end. These channels connect the cytoplasms of contacting cells. Images of isolated rat heart gap junctions have been made with the atomic force microscope in aqueous media. We show that native cardiac gap junctions have a thickness of 25 +/- 0.6 nm. This decreases to 17 nm when they are treated with trypsin, which is known to remove some cytoplasmic components of connexin 43. Imaging shows subunits with a center to center spacing of approximately 9-10 nm and long range hexagonal packing, measurements in agreement with studies using freeze-fracture and negative-stain electron microscopy. In addition to gap junctions, we imaged structures that had all the characteristics of native gap junctions except their thickness was limited to 9-11 nm. They also show long range hexagonal packing and center to center spacing of 9-10 nm. These structures decrease in thickness, to 6-9 nm, when treated with trypsin. We have called these structures hemiplaques. They appear to be present endogenously in the preparation, as we have ruled out their being an artifact of imaging by AFM. However, it remains to be determined if they are a consequence of the procedure used in isolating gap junctions or a possible intermediary in gap junction formation.

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1307
Author(s):  
Anja Beckmann ◽  
Johanna Recktenwald ◽  
Alice Ferdinand ◽  
Alexander Grißmer ◽  
Carola Meier

In a short-term model of hyperosmotic stress, primary murine astrocytes were stimulated with a hyperosmolar sucrose solution for five minutes. Astrocytic gap junctions, which are mainly composed of Connexin (Cx) 43, displayed immediate ultrastructural changes, demonstrated by freeze–fracture replica immunogold labeling: their area, perimeter, and distance of intramembrane particles increased, whereas particle numbers per area decreased. Ultrastructural changes were, however, not accompanied by changes in Cx43 mRNA expression. In contrast, transcription of the gap junction regulator zonula occludens (ZO) protein 1 significantly increased, whereas its protein expression was unaffected. Phosphorylation of Serine (S) 368 of the Cx43 C–terminus has previously been associated with gap junction disassembly and reduction in gap junction communication. Hyperosmolar sucrose treatment led to enhanced phosphorylation of Cx43S368 and was accompanied by inhibition of gap junctional intercellular communication, demonstrated by a scrape loading-dye transfer assay. Taken together, Cx43 gap junctions are fast reacting elements in response to hyperosmolar challenges and can therefore be considered as one of the first responders to hyperosmolarity. In this process, phosphorylation of Cx43S368 was associated with disassembly of gap junctions and inhibition of their function. Thus, modulation of the gap junction assembly might represent a target in the treatment of brain edema or trauma.


1976 ◽  
Vol 22 (2) ◽  
pp. 427-434
Author(s):  
F. Mazet ◽  
J. Cartaud

The freeze-fracturing technique was used to characterize the junctional devices involved in the electrical coupling of frog atrial fibres. These fibres are connected by a type of junction which can be interpreted as a morphological variant of the “gap junction” or “nexus”. The most characteristic features are rows of 9-nm junctional particles forming single or anastomosed circular profiles on the inner membrane face, and corresponding pits on the outer membrane face. Very seldom aggregates consisting of few geometrically disposed 9-nm particles are found. The significance of the junctional structures in the atrial fibres is discussed, with respect to present knowledge about junctional features of gap junctions in various tissues, including embryonic ones.


1985 ◽  
Vol 101 (5) ◽  
pp. 1741-1748 ◽  
Author(s):  
T M Miller ◽  
D A Goodenough

Gap junctions are known to present a variety of different morphologies in electron micrographs and x-ray diffraction patterns. This variation in structure is not only seen between gap junctions in different tissues and organisms, but also within a given tissue. In an attempt to understand the physiological meaning of some aspects of this variability, gap junction structure was studied following experimental manipulation of junctional channel conductance. Both physiological and morphological experiments were performed on gap junctions joining stage 20-23 chick embryo lens epithelial cells. Channel conductance was experimentally altered by using five different experimental manipulations, and assayed for conductance changes by observing the intercellular diffusion of Lucifer Yellow CH. All structural measurements were made on electron micrographs of freeze-fracture replicas after quick-freezing of specimens from the living state; for comparison, aldehyde-fixed specimens were measured as well. Analysis of the data generated as a result of this study revealed no common statistically significant changes in the intrajunctional packing of connexons in the membrane plane as a result of experimental alteration of junctional channel conductance, although some of the experimental manipulations used to alter junctional conductance did produce significant structural changes. Aldehyde fixation caused a dramatic condensation of connexon packing, a result not observed with any of the five experimental uncoupling conditions over the 40-min time course of the experiments.


Development ◽  
1991 ◽  
Vol 111 (2) ◽  
pp. 509-522
Author(s):  
R. Minkoff ◽  
S.B. Parker ◽  
E.L. Hertzberg

Gap junction distribution in the facial primordia of chick embryos at the time of primary palate formation was studied employing indirect immunofluorescence localization with antibodies to gap junction proteins initially identified in rat liver (27 × 10(3) Mr, connexin 32) and heart (43 × 10(3) Mr, connexin 43). Immunolocalization with antibodies to the rat liver gap junction protein (27 × 10(3) Mr) demonstrated a ubiquitous and uniform distribution in all regions of the epithelium and mesenchyme except the nasal placode. In the placodal epithelium, a unique non-random distribution was found characterized by two zones: a very heavy concentration of signal in the superficial layer of cells adjacent to the exterior surface and a region devoid of detectable signal in the interior cell layer adjacent to the mesenchyme. This pattern was seen during all stages of placode invagination that were examined. The separation of gap junctions in distinct cell layers was unique to the nasal placode, and was not found in any other region of the developing primary palate. One other tissue was found that exhibited this pattern-the developing neural epithelium of the brain and retina. These observations suggest the presence of region-specific signaling mechanisms and, possibly, an impedance of cell communication among subpopulations of cells in these structures at critical stages of development. Immunolocalization with antibodies to the ‘heart’ 43 × 10(3) Mr gap junction protein also revealed the presence of gap junction protein in facial primordia and neural epithelium. A non-uniform distribution of immunoreactivity was also observed for connexin 43.


1988 ◽  
Vol 91 (3) ◽  
pp. 415-421 ◽  
Author(s):  
J. Kistler ◽  
S. Bullivant

MIP and MP70 are putative gap junction components in the plasma membranes of the mammalian lens fibre cells. We show now that MP70 can be solubilized separately from MIP in mild detergent solutions, and that this treatment results in the dissociation of the fibre gap junctions. Solubilized MP70 was isolated as 16.9 S particles by velocity gradient centrifugation and in the electron microscope had the appearance of short double-membrane structures consistent with connexon-pairs. These observations open a new experimental avenue in which to characterize separately the two putative lens gap junction proteins structurally and functionally.


1991 ◽  
Vol 260 (3) ◽  
pp. C513-C527 ◽  
Author(s):  
D. C. Spray ◽  
M. Chanson ◽  
A. P. Moreno ◽  
R. Dermietzel ◽  
P. Meda

Gap junctions, dye coupling, and junctional conductance were studied in a cell line (WB) that is derived from rat liver and displays a phenotype similar to “oval” cells. In freeze-fracture replicas, two distinctive particle sizes were detected in gap junctional plaques. Immunocytochemical studies indicated punctate staining at membrane appositions using antibodies to connexin 43 and to a brain gap junction-associated antigen (34 kDa). No staining was observed using antibodies prepared against rat liver gap junction proteins (connexins 32 and 26). Pairs of WB cells were electrically and dye coupled. Junctional conductance (gj) between cell pairs averaged approximately 10 nS; occasionally, gj was low enough that unitary junctional conductances (gamma j) could be detected. Using a CsCl-containing electrode solution, distinctive gamma j values were recorded: approximately 20-30 pS, approximately 80-90 pS, and the sum of the other sizes. The largest gamma j events were apparently due to random coincident openings or closures of the smaller channels. Several treatments reduced gj. Frequency distributions of gamma j were unaltered by 2 mM halothane or 3.5 heptanol, but the sizes of intermediate and largest events were reduced slightly by 100 nM phorbol ester, and the relative frequency of the largest events was increased by 10 microM glutaraldehyde. We conclude that the distinctive gamma j values represent openings and closures of two distinct types of gap junction channels rather than substates of a single channel type; these unitary conductances may correspond to the dual immunoreactivity and to the two particle sizes seen in freeze fracture.


2020 ◽  
pp. jcs.252726
Author(s):  
Rachael P. Norris ◽  
Mark Terasaki

Gap junctions have well-established roles in cell-cell communication by way of forming permeable intercellular channels. Less is understood about their internalization, which forms double membrane vesicles containing cytosol and membranes from another cell, called connexosomes or annular gap junctions. Here, we systematically investigated the fate of connexosomes in intact ovarian follicles. High pressure frozen, serial sectioned tissue was immunogold labeled for Connexin 43. Within a volume corresponding to ∼35 cells, every labeled structure was categorized and its surface area was measured. Measurements support the concept that multiple connexosomes form from larger invaginated gap junctions. Subsequently, the inner and outer membranes separate, Cx43 immunogenicity is lost from the outer membrane, and the inner membrane appears to undergo fission. One pathway for processing involves lysosomes, based on localization of Cathespin B to some processed connexosomes. In summary, this study demonstrates new technology for high-resolution analyses of gap junction processing.


2012 ◽  
Vol 302 (10) ◽  
pp. C1548-C1556 ◽  
Author(s):  
Qin Xu ◽  
Richard F. Kopp ◽  
Yanyi Chen ◽  
Jenny J. Yang ◽  
Michael W. Roe ◽  
...  

Calmodulin (CaM) binding sites were recently identified on the cytoplasmic loop (CL) of at least three α-subfamily connexins (Cx43, Cx44, Cx50), while Cx40 does not have this putative CaM binding domain. The purpose of this study was to examine the functional relevance of the putative Cx43 CaM binding site on the Ca2+-dependent regulation of gap junction proteins formed by Cx43 and Cx40. Dual whole cell patch-clamp experiments were performed on stable murine Neuro-2a cells expressing Cx43 or Cx40. Addition of ionomycin to increase external Ca2+ influx reduced Cx43 gap junction conductance (Gj) by 95%, while increasing cytosolic Ca2+ concentration threefold. By contrast, Cx40 Gj declined by <20%. The Ca2+-induced decline in Cx43 Gj was prevented by pretreatment with calmidazolium or reversed by the addition of 10 mM EGTA to Ca2+-free extracellular solution, if Ca2+ chelation was commenced before complete uncoupling, after which gj was only 60% recoverable. The Cx43 CL136–158 mimetic peptide, but not the scrambled control peptide, or Ca2+/CaM-dependent kinase II 290–309 inhibitory peptide also prevented the Ca2+/CaM-dependent decline of Cx43 Gj. Cx43 gap junction channel open probability decreased to zero without reductions in the current amplitudes during external Ca2+/ionomycin perfusion. We conclude that Cx43 gap junctions are gated closed by a Ca2+/CaM-dependent mechanism involving the carboxyl-terminal quarter of the connexin CL domain. This study provides the first evidence of intrinsic differences in the Ca2+ regulatory properties of Cx43 and Cx40.


1997 ◽  
Vol 138 (5) ◽  
pp. 1125-1137 ◽  
Author(s):  
H. Makarenkova ◽  
D.L. Becker ◽  
C. Tickle ◽  
A.E. Warner

Pattern in the developing limb depends on signaling by polarizing region mesenchyme cells, which are located at the posterior margin of the bud tip. Here we address the underlying cellular mechanisms. We show in the intact bud that connexin 43 (Cx43) and Cx32 gap junctions are at higher density between distal posterior mesenchyme cells at the tip of the bud than between either distal anterior or proximal mesenchyme cells. These gradients disappear when the apical ectodermal ridge (AER) is removed. Fibroblast growth factor 4 (FGF4) produced by posterior AER cells controls signaling by polarizing cells. We find that FGF4 doubles gap junction density and substantially improves functional coupling between cultured posterior mesenchyme cells. FGF4 has no effect on cultured anterior mesenchyme, suggesting that any effects of FGF4 on responding anterior mesenchyme cells are not mediated by a change in gap junction density or functional communication through gap junctions. In condensing mesenchyme cells, connexin expression is not affected by FGF4. We show that posterior mesenchyme cells maintained in FGF4 under conditions that increase functional coupling maintain polarizing activity at in vivo levels. Without FGF4, polarizing activity is reduced and the signaling mechanism changes. We conclude that FGF4 regulation of cell–cell communication and polarizing signaling are intimately connected.


2002 ◽  
Vol 365 (3) ◽  
pp. 693-699 ◽  
Author(s):  
Shoeb AHMAD ◽  
W. Howard EVANS

Gap-junction channels provide a widespread intercellular signalling mechanism. They are constructed of a family of connexin membrane proteins that thread across the membrane four times and oligomerize to generate hexameric gap-junction hemichannels. Using an in vitro cell-free transcription/translation system, we demonstrate that connexin (Cx) 26, one of the smallest connexins, is integrated directly in a post-translational manner into plasma membranes. Protein-cleavage studies of Cx26 integrated into plasma membranes indicate a similar native transmembrane topography to that of Cx26 integrated co-translationally into microsomes. Cx26 integrated post-translationally into plasma membranes oligomerizes and, when incorporated into liposomes, provides permeability to ascorbic acid, suggesting that gap-junction hemichannels are generated. The results provide the basis of a novel alternative mechanism for spontaneous assembly in plasma membranes of Cx26 gap-junction hemichannels that occurs independently of the conventional biogenesis of gap junctions involving connexin trafficking and oligomerization via membrane components of the secretory pathway.


Sign in / Sign up

Export Citation Format

Share Document