LabPatch, an acquisition and analysis program for patch-clamp electrophysiology

2000 ◽  
Vol 278 (5) ◽  
pp. C1055-C1061 ◽  
Author(s):  
Tim Robinson ◽  
Lars Thomsen ◽  
Jan D. Huizinga

An acquisition and analysis program, “LabPatch,” has been developed for use in patch-clamp research. LabPatch controls any patch-clamp amplifier, acquires and records data, runs voltage protocols, plots and analyzes data, and connects to spreadsheet and database programs. Controls within LabPatch are grouped by function on one screen, much like an oscilloscope front panel. The software is mouse driven, so that the user need only point and click. Finally, the ability to copy data to other programs running in Windows 95/98, and the ability to keep track of experiments using a database, make LabPatch extremely versatile. The system requirements include Windows 95/98, at least a 100-MHz processor and 16 MB RAM, a data acquisition card, digital-to-analog converter, and a patch-clamp amplifier. LabPatch is available free of charge at http://www.fhs.mcmaster.ca/huizinga/ .

Author(s):  
Yi Lung Then ◽  
Kok Yeow You ◽  
Ming Hao Lee ◽  
Chia Yew Lee

A compact and low cost portable vector reflectometer is designed for a reliable measurement of reflection coefficient, <em>S</em><sub>11</sub>. This reflectometer focuses on return loss measurement of frequency ranges from 450 MHz to 550 MHz. The detection of magnitude and phase is based on the utilization of surface mount Analog Devices AD8302 gain/phase detector. The data acquisition is controlled by using Arduino-Nano 3.0 microcontroller, with the use of two analog to digital converter (ADC) and a digital to analog converter (DAC). One port (Open, short and matched load) calibration technique is used to eliminate systematic errors prior to data acquisition. The evaluation of the reflectometer is done by comparing the result of the measurement to that of vector network analyzer.


1977 ◽  
Vol 232 (5) ◽  
pp. C211-C215 ◽  
Author(s):  
F. Bezanilla ◽  
C. M. Armstrong

A low-cost data-acquisition device, which can be used as a signal averager or temporary data buffer, is described. It consists of 1) an input stage built with a multiplexer, sample-and-hold amplifier, and an analog-to-digital converter; 2) a memory section made of static shift registers with recirculate capability; 3) an output stage built with a demultiplexer and a digital-to-analog converter and, 4) a control module which provides the logic signals to operate the machine. Basic diagrams are presented and several applications are described.


2020 ◽  
pp. 15-23
Author(s):  
V. M. Grechishnikov ◽  
E. G. Komarov

The design and operation principle of a multi-sensor Converter of binary mechanical signals into electrical signals based on a partitioned fiber-optic digital-to-analog Converter with a parallel structure is considered. The digital-to-analog Converter is made from a set of simple and technological (three to five digit) fiber-optic digital-to-analog sections. The advantages of the optical scheme of the proposed. Converter in terms of metrological and energy characteristics in comparison with single multi-bit converters are justified. It is shown that by increasing the number of digital-analog sections, it is possible to repeatedly increase the information capacity of a multi-sensor Converter without tightening the requirements for its manufacturing technology and element base. A mathematical model of the proposed Converter is developed that reflects the features of its operation in the mode of sequential time conversion of the input code vectors of individual fiber-optic sections into electrical analogues and the formation of the resulting output code vector.


Author(s):  
Divya Singh ◽  
Aasheesh Shukla

Background : Millimeter wave technology is the emerging technology in wireless communication due to increased demand for data traffic and its numerous advantages however it suffers from severe attenuation. To mitigate this attenuation, phased antenna arrays are used for unidirectional power distribution. An initial access is needed to make a connection between the base station and users in millimeter wave system. The high complexity and cost can be mitigated by the use of hybrid precoding schemes. Hybrid precoding techniques are developed to reduce the complexity, power consumption and cost by using phase shifters in place of converters. The use of phase shifters also increases the spectral efficiency. Objective: Analysis of Optimum Precoding schemes in Millimeter Wave System. Method: In this paper, the suitability of existing hybrid precoding solutions are explored on the basis of the different algorithms and the architecture to increase the average achievable rate. Previous work done in hybrid precoding is also compared on the basis of the resolution of the phase shifter and digital to analog converter. Results: A comparison of the previous work is done on the basis of different parameters like the resolution of phase shifters, digital to analog converter, amount of power consumption and spectral efficiency. Table 2 shows the average achievable rate of different algorithms at SNR= 0 dB and 5 dB. Table 3 also compares the performance achieved by the hybrid precoder in the fully connected structure with two existing approaches, dynamic subarray structure with and without switch and sub connected or partially connected structure. Table 4 gives the comparative analysis of hybrid precoding with the different resolutions of the phase shifter and DAC. Conclusion: In this paper, some available literature is reviewed and summarized about hybrid precoding in millimeter wave communication. Current solutions of hybrid precoding are also reviewed and compared in terms of their efficiency, power consumption, and effectiveness. The limitations of the existing hybrid precoding algorithms are the selection of group and resolution of phase shifters. The mm wave massive MIMO is only feasible due to hybrid precoding.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1716
Author(s):  
Kun Tong ◽  
Ruotian Zhang ◽  
Fengzhi Ren ◽  
Tao Zhang ◽  
Junlin He ◽  
...  

Novel α-aminoamide derivatives containing different benzoheterocyclics moiety were synthesized and evaluated as voltage-gated sodium ion channels blocks the treatment of pain. Compounds 6a, 6e, and 6f containing the benzofuran group displayed more potent in vivo analgesic activity than ralfinamide in both the formalin test and the writhing assay. Interestingly, they also exhibited potent in vitro anti-Nav1.7 and anti-Nav1.8 activity in the patch-clamp electrophysiology assay. Therefore, compounds 6a, 6e, and 6f, which have inhibitory potency for two pain-related Nav targets, could serve as new leads for the development of analgesic medicines.


2021 ◽  
Vol 4 (3) ◽  
pp. 47
Author(s):  
Sergey M. Afonin

This work determines the coded control of a sectional electroelastic engine at the elastic–inertial load for nanomechatronics systems. The expressions of the mechanical and adjustment characteristics of a sectional electroelastic engine are obtained using the equations of the electroelasticity and the mechanical load. A sectional electroelastic engine is applied for coded control of nanodisplacement as a digital-to-analog converter. The transfer function and the transient characteristics of a sectional electroelastic engine at elastic–inertial load are received for nanomechatronics systems.


Sign in / Sign up

Export Citation Format

Share Document