scholarly journals Intracellular calcium events activated by ATP in murine colonic myocytes

2000 ◽  
Vol 279 (1) ◽  
pp. C126-C135 ◽  
Author(s):  
Orline Bayguinov ◽  
Brian Hagen ◽  
Adrian D. Bonev ◽  
Mark T. Nelson ◽  
Kenton M. Sanders

ATP is a candidate enteric inhibitory neurotransmitter in visceral smooth muscles. ATP hyperpolarizes visceral muscles via activation of small-conductance, Ca2+-activated K+ (SK) channels. Coupling between ATP stimulation and SK channels may be mediated by localized Ca2+ release. Isolated myocytes of the murine colon produced spontaneous, localized Ca2+ release events. These events corresponded to spontaneous transient outward currents (STOCs) consisting of charybdotoxin (ChTX)-sensitive and -insensitive events. ChTX-insensitive STOCs were inhibited by apamin. Localized Ca2+ transients were not blocked by ryanodine, but these events were reduced in magnitude and frequency by xestospongin C (Xe-C), a blocker of inositol 1,4,5-trisphosphate receptors. Thus we have termed the localized Ca2+ events in colonic myocytes “Ca2+ puffs.” The P2Y receptor agonist 2-methylthio-ATP (2-MeS-ATP) increased the intensity and frequency of Ca2+ puffs. 2-MeS-ATP also increased STOCs in association with the increase in Ca2+ puffs. Pyridoxal-phospate-6-azophenyl-2′,4′-disculfonic acid tetrasodium, a P2 receptor inhibitor, blocked responses to 2-MeS-ATP. Spontaneous Ca2+ transients and the effects of 2-MeS-ATP on Ca2+ puffs and STOCs were blocked by U-73122, an inhibitor of phospholipase C. Xe-C and ryanodine also blocked responses to 2-MeS-ATP, suggesting that, in addition to release from IP3receptor-operated stores, ryanodine receptors may be recruited during agonist stimulation to amplify release of Ca2+. These data suggest that localized Ca2+ release modulates Ca2+-dependent ionic conductances in the plasma membrane. Localized Ca2+ release may contribute to the electrical responses resulting from purinergic stimulation.

2013 ◽  
Vol 109 (2) ◽  
pp. 389-404 ◽  
Author(s):  
Yasuhiko Saito ◽  
Yuchio Yanagawa

Spontaneous miniature outward currents (SMOCs) are known to exist in smooth muscles and peripheral neurons, and evidence for the presence of SMOCs in central neurons has been accumulating. SMOCs in central neurons are induced through Ca2+-activated K+(KCa) channels, which are activated through Ca2+-induced Ca2+release from the endoplasmic reticulum via ryanodine receptors (RyRs). Previously, we found that some neurons in the prepositus hypoglossi nucleus (PHN) showed spontaneous outward currents (SOCs). In the present study, we used whole cell recordings in slice preparations of the rat brain stem to investigate the following: 1) the ionic mechanisms of SOCs, 2) the types of neurons exhibiting frequent SOCs, and 3) the effect of Ca2+-activated conductance on neuronal firing. Pharmacological analyses revealed that SOCs were induced via the activation of small-conductance-type KCa(SK) channels and RyRs, indicating that SOCs correspond to SMOCs. An analysis of the voltage responses to current pulses of the fluorescence-expressing inhibitory neurons of transgenic rats revealed that inhibitory neurons frequently exhibited SOCs. Abolition of SOCs via blockade of SK channels enhanced the frequency of spontaneous firing of inhibitory PHN neurons. However, abolition of SOCs via blockade of RyRs reduced the firing frequency and hyperpolarized the membrane potential. Similar reductions in firing frequency and hyperpolarization were also observed when Ca2+-activated nonselective cation (CAN) channels were blocked. These results suggest that, in inhibitory neurons in the PHN, Ca2+release via RyRs activates SK and CAN channels, and these channels regulate spontaneous firing in a complementary manner.


2010 ◽  
Vol 103 (5) ◽  
pp. 2900-2911 ◽  
Author(s):  
Göran Klement ◽  
Michael Druzin ◽  
David Haage ◽  
Evgenya Malinina ◽  
Peter Århem ◽  
...  

The aim of the present study was to clarify the identity of slow spontaneous currents, the underlying mechanism and possible role for impulse generation in neurons of the rat medial preoptic nucleus (MPN). Acutely dissociated neurons were studied with the perforated patch-clamp technique. Spontaneous outward currents, at a frequency of ∼0.5 Hz and with a decay time constant of ∼200 ms, were frequently detected in neurons when voltage-clamped between approximately −70 and −30 mV. The dependence on extracellular K+ concentration was consistent with K+ as the main charge carrier. We concluded that the main characteristics were similar to those of spontaneous miniature outward currents (SMOCs), previously reported mainly for muscle fibers and peripheral nerve. From the dependence on voltage and from a pharmacological analysis, we concluded that the currents were carried through small-conductance Ca2+-activated (SK) channels, of the SK3 subtype. From experiments with ryanodine, xestospongin C, and caffeine, we concluded that the spontaneous currents were triggered by Ca2+ release from intracellular stores via ryanodine receptor channels. An apparent voltage dependence was explained by masking of the spontaneous currents as a consequence of steady SK-channel activation at membrane potentials > −30 mV. Under current-clamp conditions, corresponding transient hyperpolarizations occasionally exceeded 10 mV in amplitude and reduced the frequency of spontaneous impulses. In conclusion, MPN neurons display spontaneous hyperpolarizations triggered by Ca2+ release via ryanodine receptors and SK3-channel activation. Thus such events may affect impulse firing of MPN neurons.


2004 ◽  
Vol 123 (4) ◽  
pp. 377-386 ◽  
Author(s):  
Guangju Ji ◽  
Morris E. Feldman ◽  
Kai Su Greene ◽  
Vincenzo Sorrentino ◽  
Hong-Bo Xin ◽  
...  

Calcium release through ryanodine receptors (RYR) activates calcium-dependent membrane conductances and plays an important role in excitation-contraction coupling in smooth muscle. The specific RYR isoforms associated with this release in smooth muscle, and the role of RYR-associated proteins such as FK506 binding proteins (FKBPs), has not been clearly established, however. FKBP12.6 proteins interact with RYR2 Ca2+ release channels and the absence of these proteins predictably alters the amplitude and kinetics of RYR2 unitary Ca2+ release events (Ca2+ sparks). To evaluate the role of specific RYR2 and FBKP12.6 proteins in Ca2+ release processes in smooth muscle, we compared spontaneous transient outward currents (STOCs), Ca2+ sparks, Ca2+-induced Ca2+ release, and Ca2+ waves in smooth muscle cells freshly isolated from wild-type, FKBP12.6−/−, and RYR3−/− mouse bladders. Consistent with a role of FKBP12.6 and RYR2 proteins in spontaneous Ca2+ sparks, we show that the frequency, amplitude, and kinetics of spontaneous, transient outward currents (STOCs) and spontaneous Ca2+ sparks are altered in FKBP12.6 deficient myocytes relative to wild-type and RYR3 null cells, which were not significantly different from each other. Ca2+ -induced Ca2+ release was similarly augmented in FKBP12.6−/−, but not in RYR3 null cells relative to wild-type. Finally, Ca2+ wave speed evoked by CICR was not different in RYR3 cells relative to control, indicating that these proteins are not necessary for normal Ca2+ wave propagation. The effect of FKBP12.6 deletion on the frequency, amplitude, and kinetics of spontaneous and evoked Ca2+ sparks in smooth muscle, and the finding of normal Ca2+ sparks and CICR in RYR3 null mice, indicate that Ca2+ release through RYR2 molecules contributes to the formation of spontaneous and evoked Ca2+ sparks, and associated STOCs, in smooth muscle.


2002 ◽  
Vol 120 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Ronghua ZhuGe ◽  
Kevin E. Fogarty ◽  
Richard A. Tuft ◽  
John V. Walsh

Ca2+ sparks are small, localized cytosolic Ca2+ transients due to Ca2+ release from sarcoplasmic reticulum through ryanodine receptors. In smooth muscle, Ca2+ sparks activate large conductance Ca2+-activated K+ channels (BK channels) in the spark microdomain, thus generating spontaneous transient outward currents (STOCs). The purpose of the present study is to determine experimentally the level of Ca2+ to which the BK channels are exposed during a spark. Using tight seal, whole-cell recording, we have analyzed the voltage-dependence of the STOC conductance (g(STOC)), and compared it to the voltage-dependence of BK channel activation in excised patches in the presence of different [Ca2+]s. The Ca2+ sparks did not change in amplitude over the range of potentials of interest. In contrast, the magnitude of g(STOC) remained roughly constant from 20 to −40 mV and then declined steeply at more negative potentials. From this and the voltage dependence of BK channel activation, we conclude that the BK channels underlying STOCs are exposed to a mean [Ca2+] on the order of 10 μM during a Ca2+ spark. The membrane area over which a concentration ≥10 μM is reached has an estimated radius of 150–300 nm, corresponding to an area which is a fraction of one square micron. Moreover, given the constraints imposed by the estimated channel density and the Ca2+ current during a spark, the BK channels do not appear to be uniformly distributed over the membrane but instead are found at higher density at the spark site.


2003 ◽  
Vol 31 (5) ◽  
pp. 920-924 ◽  
Author(s):  
J.G. McCarron ◽  
K.N. Bradley ◽  
D. MacMillan ◽  
T.C. Muir

Smooth muscle cells respond to InsP3-generating (sarcolemma-acting) neurotransmitters and hormones by releasing Ca2+ from the internal store. However, the release of Ca2+ does not occur uniformly throughout the cytoplasm but often into a localized area before being transmitted to other regions of the cell in the form of Ca2+ waves and oscillations to actively spread information within and between cells. Yet, despite their significance, our understanding of the generation of oscillations to waves is incomplete. A major aspect of controversy centres on whether or not Ca2+ released from the InsP3 receptor activates RyRs (ryanodine receptors) to generate further release by Ca2+-induced Ca2+ release and propagate waves or whether the entire process arises from InsP3 receptor activity alone. Under normal physiological conditions the [Ca2+] required to activate RyR (approx. 15 μM) exceeds the bulk average [Ca2+]c (cytoplasmic Ca2+ concentration) generated by InsP3 receptor activity (<1 μM). Progression of waves and oscillations by RyR activity would require a loss of control of RyR activity and an unrestrained positive feedback on Ca2+ release. Under store-overload conditions, RyR Ca2+ sensitivity is increased and this enables waves to be induced by RyR activity. However, the relevance of these Ca2+-release events to normal physiological functioning is unclear. The InsP3 receptor, on the other hand, is activated by Ca2+ over the physiological range (up to 300 nM) and deactivated by higher [Ca2+]c (>300 nM), features that favour intermittent activity of the receptor as occurs in waves and oscillations. Experimental evidence for the involvement of RyR relies mainly on pharmacological approaches in the intact cell where poor drug specificity could have led to ambiguous results. In this brief review the possible interactions between InsP3 receptors and RyR in the generation of oscillations and waves will be discussed. Evidence is presented that RyRs are not required for InsP3-mediated Ca2+ transients. Notwithstanding, ryanodine can inhibit InsP3-mediated Ca2+ responses after RyR activity has been induced by caffeine or by steady depolarization which evokes spontaneous transient outward currents (a sarcolemmal manifestation of RyR activity). Ryanodine inhibits InsP3-mediated Ca2+ transients by depleting the store of Ca2+ rather than by RyR involvement in the InsP3-mediated Ca2+ increase.


1996 ◽  
Vol 271 (3) ◽  
pp. C772-C782 ◽  
Author(s):  
Y. Imaizumi ◽  
S. Henmi ◽  
Y. Uyama ◽  
K. Atsuki ◽  
Y. Torii ◽  
...  

Characteristics of Ca2+ release from stores were investigated in strips from ileum and portal vein and in isolated myocytes from ileum and urinary bladder of the guinea pig with use of caffeine and 9-methyl-7-bromoeudistomin D (MBED), a potent releaser of Ca2+ from skeletal muscle sarcoplasmic reticulum. In skinned strips, 1-30 mM caffeine elicited a transient contraction, but 10-300 microM MBED did not. Pretreatment with 100 microM MBED did not affect the subsequent caffeine-induced contraction. In single cells loaded with indo 1-acetoxymethyl ester, 10 mM caffeine increased cytoplasmic Ca2+ concentration, whereas 100 microM MBED elicited a small or no increase. Under whole cell clamp, spontaneous transient outward currents through Ca(2+)-dependent K+ (BK) channels were first enhanced and then suppressed by 30 microM MBED or 5 mM caffeine. The amplitude of Ca(2+)-dependent transient K+ current on depolarization was reduced by MBED and caffeine (50% inhibitory concentrations = 20 microM and 1 mM, respectively). Other currents and single BK channel activity were not significantly affected by MBED. The Ca2+ release from stores responsible for BK channel activation may be resolved from that for the activation of the contractile system by MBED in these smooth muscle cells.


2000 ◽  
Vol 278 (2) ◽  
pp. C352-C362 ◽  
Author(s):  
In Deok Kong ◽  
Sang Don Koh ◽  
Kenton M. Sanders

Spontaneous transient outward currents (STOCs) were recorded from smooth muscle cells of the guinea pig taenia coli using the whole cell patch-clamp technique. STOCs were resolved at potentials positive to −50 mV. Treating cells with caffeine (1 mM) caused a burst of outward currents followed by inhibition of STOCs. Replacing extracellular Ca2+ with equimolar Mn2+ caused STOCs to “run down.” Iberiotoxin (200 nM) or charybdotoxin (ChTX; 200 nM) inhibited large-amplitude STOCs, but small-amplitude “mini-STOCs” remained in the presence of these drugs. Mini-STOCs were reduced by apamin (500 nM), an inhibitor of small-conductance Ca2+-activated K+ channels (SK channels). Application of ATP or 2-methylthioadenosine 5′-triphosphate (2-MeS-ATP) increased the frequency of STOCs. The effects of 2-MeS-ATP persisted in the presence of charybdotoxin but were blocked by combination of ChTX (200 nM) and apamin (500 nM). 2-MeS-ATP did not increase STOCs in the presence of pyridoxal phosphate 6-azophenyl-2′,4′-disulfonic acid, a P2 receptor blocker. Similarly, pretreatment of cells with U-73122 (1 μM), an inhibitor of phospholipase C (PLC), abolished the effects of 2-MeS-ATP. Xestospongin C, an inositol 1,4,5-trisphosphate (IP3) receptor blocker, attenuated STOCs, but these events were not affected by ryanodine. The data suggest that purinergic activation through P2Y receptors results in localized Ca2+ release via PLC- and IP3-dependent mechanisms. Release of Ca2+ is coupled to STOCs, which are composed of currents mediated by large-conductance Ca2+-activated K+ channels and SK channels. The latter are thought to mediate hyperpolarization and relaxation responses of gastrointestinal muscles to inhibitory purinergic stimulation.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiao-Dong Zhang ◽  
Zana A. Coulibaly ◽  
Wei Chun Chen ◽  
Hannah A. Ledford ◽  
Jeong Han Lee ◽  
...  

1997 ◽  
Vol 273 (6) ◽  
pp. C2010-C2021 ◽  
Author(s):  
S. D. Koh ◽  
G. M. Dick ◽  
K. M. Sanders

The patch-clamp technique was used to determine the ionic conductances activated by ATP in murine colonic smooth muscle cells. Extracellular ATP, UTP, and 2-methylthioadenosine 5′-triphosphate (2-MeS-ATP) increased outward currents in cells with amphotericin B-perforated patches. ATP (0.5–1 mM) did not affect whole cell currents of cells dialyzed with solutions containing ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid. Apamin (3 × 10−7M) reduced the outward current activated by ATP by 32 ± 5%. Single channel recordings from cell-attached patches showed that ATP, UTP, and 2-MeS-ATP increased the open probability of small-conductance, Ca2+-dependent K+ channels with a slope conductance of 5.3 ± 0.02 pS. Caffeine (500 μM) enhanced the open probability of the small-conductance K+ channels, and ATP had no effect after caffeine. Pyridoxal phosphate 6-azophenyl-2′,4′-disulfonic acid tetrasodium (PPADS, 10−4 M), a nonselective P2 receptor antagonist, prevented the increase in open probability caused by ATP and 2-MeS-ATP. PPADS had no effect on the response to caffeine. ATP-induced hyperpolarization in the murine colon may be mediated by P2y-induced release of Ca2+ from intracellular stores and activation of the 5.3-pS Ca2+-activated K+ channels.


Sign in / Sign up

Export Citation Format

Share Document