Aminoacyl-tRNA enrichment after a flood of labeled phenylalanine: insulin effect on muscle protein synthesis

2002 ◽  
Vol 282 (5) ◽  
pp. E1029-E1038 ◽  
Author(s):  
Giuseppe Caso ◽  
G. Charles Ford ◽  
K. Sreekumaran Nair ◽  
Peter J. Garlick ◽  
Margaret A. McNurlan

Muscle protein synthesis in dogs measured by flooding withl-[2H5]phenylalanine (70 mg/kg) was significantly stimulated by infusion of insulin with amino acids. The stimulation of muscle protein synthesis was similar when calculated from the enrichment of phenylalanyl-tRNA (61 ± 10%, P< 0.001), plasma phenylalanine (61 ± 10%, P < 0.001), or tissue fluid phenylalanine (54 ± 10%, P < 0.001). The time course for changes in enrichment ofl-[2H5]phenylalanine throughout the flooding period was determined for plasma, tissue fluid, and phenylalanyl-tRNA in the basal state and during the infusion of insulin with amino acids. Enrichments of plasma free phenylalanine and phenylalanyl-tRNA were equalized between 20 and 45 min, although the enrichment of phenylalanyl-tRNA was lower at early time points. Rates of muscle protein synthesis obtained with the flooding method and calculated from plasma phenylalanine enrichment were comparable to those calculated from phenylalanyl-tRNA and also to those obtained previously with a continuous infusion of phenylalanine with phenylalanyl-tRNA as precursor. This study confirms that, with a bolus injection of labeled phenylalanine, the enrichment of aminoacyl-tRNA, the true precursor pool for protein synthesis, can be assessed from more readily sampled plasma phenylalanine.

2006 ◽  
Vol 291 (4) ◽  
pp. E729-E736 ◽  
Author(s):  
Lisa S. Chow ◽  
Robert C. Albright ◽  
Maureen L. Bigelow ◽  
Gianna Toffolo ◽  
Claudio Cobelli ◽  
...  

Despite being an anabolic hormone in skeletal muscle, insulin's anticatabolic mechanism in humans remains controversial, with contradictory reports showing either stimulation of protein synthesis (PS) or inhibition of protein breakdown (PB) by insulin. Earlier measurements of muscle PS and PB in humans have relied on different surrogate measures of aminoacyl-tRNA and intracellular pools. We report that insulin's effect on muscle protein turnover using aminoacyl-tRNA as the precursor of PS and PB is calculated by mass balance of tracee amino acid (AA). We compared the results calculated from various surrogate measures. To determine the physiological role of insulin on muscle protein metabolism, we infused tracers of leucine and phenylalanine into 18 healthy subjects, and after 3 h, 10 subjects received a 4-h femoral arterial infusion of insulin (0.125 mU·kg−1·min−1), while eight subjects continued with saline. Tracer-to-tracee ratios of leucine, phenylalanine, and ketoisocaproate were measured in the arterial and venous plasma, muscle tissue fluid, and AA-tRNA to calculate muscle PB and PS. Insulin infusion, unlike saline, significantly reduced the efflux of leucine and phenylalanine from muscle bed, based on various surrogate measures which agreed with those based on leucyl-tRNA (−28%), indicating a reduction in muscle PB ( P < 0.02) without any significant effect on muscle PS. In conclusion, using AA-tRNA as the precursor pool, it is demonstrated that, in healthy humans in the postabsorptive state, insulin does not stimulate muscle protein synthesis and confirmed that insulin achieves muscle protein anabolism by inhibition of muscle protein breakdown.


1994 ◽  
Vol 267 (2) ◽  
pp. E203-E209 ◽  
Author(s):  
P. Q. Baumann ◽  
W. S. Stirewalt ◽  
B. D. O'Rourke ◽  
D. Howard ◽  
K. S. Nair

The accuracy of using other free pools in lieu of tRNA for calculation of tissue protein synthesis in liver (L), skeletal muscle (SM), and heart (H) was assessed in six adult miniature swine using L-[1-13C]leucine and L-[ring-2H5]phenylalanine as tracers. L leucyl-tRNA enrichment was higher than arterial plasma leucine and ketoisocaproate (KIC) enrichments, and L phenylalanyl-tRNA enrichment was higher than arterial phenylalanine enrichment (P < 0.05). No such differences were noted in SM and H. Leucyl- and phenylalanyl-tRNA enrichments in L were best predicted by the respective amino acid enrichments in tissue fluid [TF; Leu: slope (m) = 0.954 +/- 0.035; Phe: m = 1.011 +/- 0.032] using linear regression analysis to determine the accuracy of the prediction, whereas plasma phenylalanine reasonably predicted phenylalanyl-tRNA (artery: m = 0.821 +/- 0.032; vein: m = 0.947 +/- 0.135). In SM, plasma KIC (artery: m = 0.846 +/- 0.046; vein: m = 0.881 +/- 0.043) and TF leucine (m = 0.788 +/- 0.034) predicted leucyl-tRNA with high accuracy. In H tissue, TF (m = 0.991 +/- 0.044) was the best predictor of leucyl-tRNA enrichment, whereas arterial phenylalanine (m = 0.912 +/- 0.015) was the most reliable predictor of phenylalanyl-tRNA enrichment. The relationships between aminoacyl-tRNA and other free pools in the same species under the same study conditions differ in different tissues. Use of KIC in lieu of leucyl-tRNA for calculating muscle protein synthesis is supported by this study.


2011 ◽  
Vol 43 (12) ◽  
pp. 2249-2258 ◽  
Author(s):  
DILLON K. WALKER ◽  
JARED M. DICKINSON ◽  
KYLE L. TIMMERMAN ◽  
MICAH J. DRUMMOND ◽  
PAUL T. REIDY ◽  
...  

1991 ◽  
Vol 260 (3) ◽  
pp. E499-E504 ◽  
Author(s):  
D. A. Fryburg ◽  
R. A. Gelfand ◽  
E. J. Barrett

The short-term effects of growth hormone (GH) on skeletal muscle protein synthesis and degradation in normal humans are unknown. We studied seven postabsorptive healthy men (age 18-23 yr) who received GH (0.014 micrograms.kg-1.min-1) via intrabrachial artery infusion for 6 h. The effects of GH on forearm amino acid and glucose balances and on forearm amino acid kinetics [( 3H]Phe and [14C]Leu) were determined after 3 and 6 h of the GH infusion. Forearm deep vein GH rose to 35 +/- 6 ng/ml in response to GH, whereas systemic levels of GH, insulin, and insulin-like growth factor I (IGF-I) were unchanged. Forearm glucose uptake did not change during the study. After 6 h, GH suppressed forearm net release (3 vs. 6 h) of Phe (P less than 0.05), Leu (P less than 0.01), total branched-chain amino acids (P less than 0.025), and essential neutral amino acids (0.05 less than P less than 0.1). The effect on the net balance of Phe and Leu was due to an increase in the tissue uptake for Phe (71%, P less than 0.05) and Leu (37%, P less than 0.005) in the absence of any significant change in release of Phe or Leu from tissue. In the absence of any change in systemic GH, IGF-I, or insulin, these findings suggest that locally infused GH stimulates skeletal muscle protein synthesis. These findings have important physiological implications for both the role of daily GH pulses and the mechanisms through which GH can promote protein anabolism.


1982 ◽  
Vol 242 (3) ◽  
pp. E184-E192 ◽  
Author(s):  
M. P. Hedden ◽  
M. G. Buse

Protein synthesis was measured in rat diaphragms incubated with serum amino acids + 0.35 mM L-[2,6-3H]tyrosine and different energy-yielding substrates. Muscles incubated with 5.5 mM glucose (with or without actinomycin D) synthesized more protein than those incubated with 11 mM pyruvate or 11 mM lactate. Tissue ATP decreased during incubation with lactate, but pyruvate maintained ATP, ADP, and creatine phosphate as well as glucose. Glucose 6-phosphate decreased in muscles incubated in glucose-free media. 14CO2 production from substrates was [1-14C]pyruvate greater than [1-14C]lactate greater than [3,4-14C]glucose. Intracellular lactate/pyruvate was measured to assess cytoplasmic free NADH/NAD+; the effect of different media on these ratios was lactate greater than glucose = lactate + pyruvate greater than pyruvate + glucose greater than pyruvate. Lactate + pyruvate (8.8 + 2.2 mM) supported protein synthesis better than pyruvate and as well as glucose. Adding glucose to pyruvate accelerated protein synthesis and increased NADH/NAD+. Iodoacetate (0.1 mM) inhibited glycolytic NAD reduction and abolished the stimulatory effect of glucose on protein synthesis in the presence of pyruvate. Supplementation of pyruvate media with 1 mM leucine or isoleucine stimulated protein synthesis, but beta-hydroxybutyrate, malate, alpha-ketoisocaproate, and all other amino acids were ineffective. The cytoplasmic redox potential may act as a translational modulator of protein synthesis in skeletal muscle.


1997 ◽  
Vol 273 (1) ◽  
pp. E122-E129 ◽  
Author(s):  
G. Biolo ◽  
K. D. Tipton ◽  
S. Klein ◽  
R. R. Wolfe

Six normal untrained men were studied during the intravenous infusion of a balanced amino acid mixture (approximately 0.15 g.kg-1.h-1 for 3 h) at rest and after a leg resistance exercise routine to test the influence of exercise on the regulation of muscle protein kinetics by hyperaminoacidemia. Leg muscle protein kinetics and transport of selected amino acids (alanine, phenylalanine, leucine, and lysine) were isotopically determined using a model based on arteriovenous blood samples and muscle biopsy. The intravenous amino acid infusion resulted in comparable increases in arterial amino acid concentrations at rest and after exercise, whereas leg blood flow was 64 +/- 5% greater after exercise than at rest. During hyperaminoacidemia, the increases in amino acid transport above basal were 30-100% greater after exercise than at rest. Increases in muscle protein synthesis were also greater after exercise than at rest (291 +/- 42% vs. 141 +/- 45%). Muscle protein breakdown was not significantly affected by hyperminoacidemia either at rest or after exercise. We conclude that the stimulatory effect of exogenous amino acids on muscle protein synthesis is enhanced by prior exercise, perhaps in part because of enhanced blood flow. Our results imply that protein intake immediately after exercise may be more anabolic than when ingested at some later time.


2004 ◽  
Vol 286 (4) ◽  
pp. E658-E664 ◽  
Author(s):  
Dominic S. C. Raj ◽  
Elizabeth A. Dominic ◽  
Robert Wolfe ◽  
Vallabh O. Shah ◽  
Arthur Bankhurst ◽  
...  

Serum albumin, fibrinogen levels, and lean body mass are important predictors of outcome in end-stage renal disease (ESRD). We estimated the fractional synthesis rates of albumin (FSR-A), fibrinogen (FSR-F), and muscle protein (FSR-M) in nine ESRD patients and eight controls, using primed constant infusion of l-[ ring-13C6]phenylalanine. Cytokine profile and arteriovenous balance of amino acids were also measured. ESRD patients were studied before (Pre-HD) and during hemodialysis (HD). Plasma IL-6, IL-10, and C-reactive protein increased significantly during HD. Despite a decrease in the delivery of amino acids to the leg, the outflow of the amino acids increased during HD. The net balance of amino acids became more negative during HD, indicating release from the muscle. HD increased leg muscle protein synthesis (45%) and catabolism (108%) but decreased whole body proteolysis (15%). FSR-A during HD (9.7 ± 0.9%/day) was higher than pre-HD (6.5 ± 0.9%/day) and controls (5.8 ± 0.5%/day, P < 0.01). FSR-F increased during HD (19.7 ± 2.6%/day vs. 11.8 ± 0.6%/day, P < 0.01), but it was not significantly different from that of controls (14.4 ± 1.4%/day). FSR-M intradialysis (1.77 ± 0.19%/day) was higher than pre-HD (1.21 ± 0.25%/day) and controls (1.30 ± 0.32%/day, P < 0.001). Pre-HD FSR-A, FSR-F, and FSR-M values were comparable to those of controls. There was a significant and positive correlation between plasma IL-6 and the FSRs. Thus, in ESRD patients without metabolic acidosis, the fractional synthesis rates of albumin, fibrinogen, and muscle protein are not decreased pre-HD. However, HD increases the synthesis of albumin, fibrinogen, and muscle protein. The coordinated increase in the FSRs is facilitated by constant delivery of amino acids derived from the muscle catabolism and intradialytic increase in IL-6.


Sign in / Sign up

Export Citation Format

Share Document