Selective role of neuropeptide Y receptor subtype Y2 in the control of gonadotropin secretion in the rat

2007 ◽  
Vol 293 (5) ◽  
pp. E1385-E1392 ◽  
Author(s):  
L. Pinilla ◽  
R. Fernández-Fernández ◽  
J. Roa ◽  
J. M. Castellano ◽  
M. Tena-Sempere ◽  
...  

Different signals with key roles in energy homeostasis regulate the reproductive axis. These include neuropeptide Y and polypeptide YY3-36, whose type Y2 receptor is the most abundant of this family in the brain. We evaluated herein the putative roles of Y2 receptors in the control of gonadotropin secretion by means of central administration of PYY13-36 (agonist of Y2 receptors) and BIIE 0246 (antagonist of Y2 receptors) to intact and orchidectomized male rats. In addition, the ability of PYY13-36 to elicit GnRH and gonadotropin secretion in vitro and the impact of fasting on LH responses to PYY13-36 in vivo were also monitored. Central administration of PYY13-36 significantly decreased the circulating levels of both gonadotropins, an effect that was observed in prepubertal and adult rats. Yet a dual action of Y2 receptors in the control of male gonadotropic axis was evidenced as their activation induced 1) stimulation of gonadotropin responses to GnRH at the pituitary but 2) inhibition of GnRH secretion at the hypothalamus. Antagonization of Y2 receptors failed to modify basal LH secretion in intact males either after being fed ad libitum or after being fasted. In contrast, their central blockade in orchidectomized rats evoked a significant increase in circulating LH and FSH level, suggesting the constitutive activation of Y2 receptor in such stimulated conditions. In summary, our data evidence a complex mode of action of Y2 receptors in the control of gonadotropic axis, with stimulatory and inhibitory actions at different levels of the system that are sensitive to the gonadal status.

1996 ◽  
Vol 135 (4) ◽  
pp. 481-488 ◽  
Author(s):  
Antonio Torsello ◽  
Roberta Grilli ◽  
Marina Luoni ◽  
Margherita Guidi ◽  
Maria Cristina Ghigo ◽  
...  

Torsello A, Grilli R, Luoni M, Guidi M, Ghigo MC, Wehrenberg WB, Deghenghi R, Müller EE, Locatelli V. Mechanism of action of Hexarelin. I. Growth hormone-releasing activity in the rat. Eur J Endocrinol 1996;135:481–8. ISSN 0804–4643 We have reported Hexarelin (HEXA), an analog of growth hormone-releasing peptide 6 (GHRP-6), potently stimulates growth hormone (GH) secretion in infant and adult rats. This study was undertaken to further investigate Hexarelin's mechanisms of action. In 10-day-old pups, treatments with HEXA (80 μg/kg, b.i.d.) for 3–10 days significantly enhanced, in a time-related fashion, the GH response to an acute HEXA challenge. Qualitatively similar effects were elicited in pups passively immunized against growth hormone-releasing hormone (GHRH) from birth. In adult male rats, a 5-day pretreatment with HEXA (150 μg/kg, b.i.d.) did not enhance the effect of the acute challenge, and the same pattern was present after a 5-day pretreatment in male rats with surgical ablation of the mediobasal hypothalamus (MBH-ablated rats). In addition, in adult sham-operated rats, Hexarelin (300 μg/kg, iv) induced a GH response greater (p < 0.05) than that induced by GHRH (2 μg/kg, iv). However, in MBH-ablated rats 7 days after surgery, GHRH was significantly (p < 0.05) more effective than HEXA, and 30 days after surgery HEXA and GHRH evoked similar rises of plasma GH. Finally, the in vitro Hexarelin (10−6 mol/l) effect was transient while GHRH (10−8 mol/l) induced a longer lasting and greater GH release. Three different mechanisms, not mutually exclusive, are postulated for Hexarelin stimulation of GH secretion in vivo: a direct action on the pituitary, though of minor relevance; an indirect action that involves release of GHRH, of relevance only in adult rats; and an action through the release of a still unknown hypothalamic "factor", which in infant and adult rats elicits GH release acting sinergistically with GHRH. Antonio Torsello, Department of Pharmacology, via Vanvitelli 32, 20129 Milano, Italy


1999 ◽  
Vol 277 (6) ◽  
pp. G1189-G1199 ◽  
Author(s):  
Robert F. Rotundo ◽  
Peter A. Vincent ◽  
Paula J. McKeown-Longo ◽  
Frank A. Blumenstock ◽  
Thomas M. Saba

Fibronectin (Fn) is a major adhesive protein found in the hepatic extracellular matrix (ECM). In adult rats, the in vivo turnover of plasma Fn (pFn) incorporated into the liver ECM is relatively rapid, i.e., <24 h, but the regulation of its turnover has not been defined. We previously reported that cellular Fn (cFn) and enzymatically desialylated plasma Fn (aFn), both of which have a high density of exposed terminal galactose residues, rapidly interact with hepatic asialoglycoprotein receptors (ASGP-R) in association with their plasma clearance after intravenous infusion. With the use of adult male rats (250–350 g) and measurement of the deoxycholate (DOC)-insoluble125I-labeled Fn in the liver, we determined whether the ASGP-R system can also influence the hepatic matrix retention of various forms of Fn. There was a rapid deposition of 125I-pFn,125I-aFn, and125I-cFn into the liver ECM after their intravenous injection. Although125I-pFn was slowly lost from the liver matrix over 24 h, more than 90% of the incorporated125I-aFn and125I-cFn was cleared within 4 h ( P < 0.01). Intravenous infusion of excess nonlabeled asialofetuin to competitively inhibit the hepatic ASGP-R delayed the rapid turnover of both aFn and cFn already incorporated within the ECM of the liver. ECM retention of both125I-aFn and125I-cFn was also less than125I-pFn ( P < 0.01) as determined in vitro using liver slices preloaded in vivo with either tracer form of Fn. The hepatic ASGP-R appears to participate in the turnover of aFn and cFn within the liver ECM, whereas a non-ASGP-R-associated endocytic pathway apparently influences the removal of normal pFn incorporated within the hepatic ECM, unless it becomes locally desialylated.


2011 ◽  
Vol 300 (5) ◽  
pp. E837-E847 ◽  
Author(s):  
Leonor Pinilla ◽  
Rafael Pineda ◽  
Francisco Gaytán ◽  
Magdalena Romero ◽  
David García-Galiano ◽  
...  

VGF (nonacronymic) is a 68-kDa protein encoded by the homonymous gene, which is expressed abundantly at the hypothalamus and has been involved in the control of metabolism and body weight homeostasis. Different active peptide fragments are generated from VGF, including TLQP-21. Circumstantial evidence has suggested that VGF might also participate in the control of reproduction. Yet its mechanisms of action and the eventual role of specific VGF-derived peptides on the hypothalamic-pituitary-gonadal (HPG) axis remain unknown. Herein we report a series of studies on the reproductive effects of TLQP-21 as evaluated in male rats by a combination of in vivo and in vitro analyses. Central administration of TLQP-21 induced acute gonadotropin responses in pubertal and adult male rats, likely via stimulation of GnRH secretion, as documented by static incubations of hypothalamic tissue. In addition, in pubertal (but not adult) males, TLQP-21 stimulated LH secretion directly at the pituitary level. Repeated central administration of TLQP-21 to pubertal males subjected to chronic undernutrition was able to ameliorate the hypogonadotropic state induced by food deprivation. In contrast, chronic administration of TLQP-21 to fed males at puberty resulted in partial desensitization and puberty delay. Finally, in adult (but not pubertal) males, TLQP-21 enhanced hCG-stimulated testosterone secretion by testicular tissue in vitro. In summary, our data are the first to document a complex and multifaceted mode of action of TLQP-21 at different levels of the male HPG axis with predominant stimulatory effects, thus providing a tenable basis for the (direct) reproductive role of this VGF-derived peptide.


Endocrinology ◽  
2010 ◽  
Vol 151 (2) ◽  
pp. 722-730 ◽  
Author(s):  
R. Pineda ◽  
D. Garcia-Galiano ◽  
A. Roseweir ◽  
M. Romero ◽  
M. A. Sanchez-Garrido ◽  
...  

Kisspeptins (Kp) have recently emerged as master regulators of the reproductive axis and among the most potent elicitors of GnRH-gonadotropin secretion. Despite their paramount importance in reproductive physiology and their potential therapeutic implications, development of Kp antagonists has remained elusive, and only recently has the first compound with the ability to block Kp actions in vitro and in vivo, namely p234, been reported. However, previous in vivo studies all used acute central injections, whereas characterization of the effects of the antagonist after continuous or systemic administration, which poses pharmacological challenges, is still pending. We report herein a comprehensive series of analyses on the impact of continuous intracerebroventricular infusion of p234 on puberty onset and the preovulatory surge of gonadotropins in the female rat. In addition, the effects of systemic (ip) administration of a tagged p234-penetratin, with a predicted higher permeability at the blood-brain barrier, on Kp-10 induced gonadotropin secretion were evaluated. Central infusion of p234 to pubertal females delayed vaginal opening and decreased uterine and ovarian weights at the expected time of puberty, without affecting body weight. Likewise, chronic intracerebroventricular administration of p234 for 4 d prevented the preovulatory surges of LH and FSH. In addition, systemic (ip) administration of p234-penetratin significantly attenuated acute LH and FSH responses to Kp-10, either after intracerebroventricular or ip injection of Kp. Our data document the validity of p234 for antagonizing Kp actions in vivo and provide direct experimental evidence for the important role of Kp signaling in the key events of female reproduction, such as puberty onset and the preovulatory surge of gonadotropins.


Endocrinology ◽  
2014 ◽  
Vol 155 (11) ◽  
pp. 4402-4410 ◽  
Author(s):  
Sara R. Jørgensen ◽  
Mille D. Andersen ◽  
Agnete Overgaard ◽  
Jens D. Mikkelsen

Abstract GnRH is a key player in the hypothalamic control of gonadotropin secretion from the anterior pituitary gland. It has been shown that the mammalian counterpart of the avian gonadotropin inhibitory hormone named RFamide-related peptide (RFRP) is expressed in hypothalamic neurons that innervate and inhibit GnRH neurons. The RFRP precursor is processed into 2 mature peptides, RFRP-1 and RFRP-3. These are characterized by a conserved C-terminal motif RF-NH2 but display highly different N termini. Even though the 2 peptides are equally potent in vitro, little is known about their relative distribution and their distinct roles in vivo. In this study, we raised an antiserum selective for RFRP-1 and defined the distribution of RFRP-1-immunoreactive (ir) neurons in the rat brain. Next, we analyzed the level of RFRP-1-ir during postnatal development in males and females and investigated changes in RFRP-1-ir during the estrous cycle. RFRP-1-ir neurons were distributed along the third ventricle from the caudal part of the medial anterior hypothalamus throughout the medial tuberal hypothalamus and were localized in, but mostly in between, the dorsomedial hypothalamic, ventromedial hypothalamic, and arcuate nuclei. The number of RFRP-1-ir neurons and the density of cellular immunoreactivity were unchanged from juvenile to adulthood in male rats during the postnatal development. However, both parameters were significantly increased in female rats from peripuberty to adulthood, demonstrating prominent gender difference in the developmental control of RFRP-1 expression. The percentage of c-Fos-positive RFRP-1-ir neurons was significantly higher in diestrus as compared with proestrus and estrus. In conclusion, we found that adult females, as compared with males, have significantly more RFRP-1-ir per cell, and these cells are regulated during the estrous cycle.


2000 ◽  
Vol 78 (2) ◽  
pp. 173-185 ◽  
Author(s):  
Jacques Duhault ◽  
Michèle Boulanger ◽  
Susana Chamorro ◽  
Jean A Boutin ◽  
Odile Della Zuana ◽  
...  

Neuropeptide Y (NPY), one of the most abundant peptides in rat and human brains, appears to act in the hypothalamus to stimulate feeding. It was first suggested that the NPY Y1 receptor (Y1R) was involved in feeding stimulated by NPY. More recently a novel NPY receptor subtype (Y5R) was identified in rat and human as the NPY feeding receptor subtype. There is, however, no absolute consensus since selective Y1R antagonists also antagonize NPY-induced hyperphagia. Nevertheless, new anti-obesity drugs may emerge from further pharmacological characterization of the NPY receptors and their antagonists. A large panel of Y1R and Y5R antagonists (such as CGP71683A, BIBO3304, BIBP3226, 1229U91, and SYNAPTIC and BANYU derivatives but also patentable in-house-synthesized compounds) have been evaluated through in vitro and in vivo tests in an attempt to establish a predictive relationship between the binding selectivity for human receptors, the potency in isolated organs assays, and the inhibitory effect on food intake in both normal and obese hyperphagic rodents. Although these results do not allow one to conclude on the implication of a single receptor subtype at the molecular level, this approach is crucial for the design of novel NPY receptor antagonists with potential use as anti-obesity drugs and for evaluation of their possible adverse peripheral side effects, such as hypotension.Key words: obesity, weight reduction, food intake, neuropeptide Y, rodents.


1992 ◽  
Vol 1 (3) ◽  
pp. 37-56 ◽  
Author(s):  
Leonard Friedman ◽  
John Scalera ◽  
James E. Keys ◽  
Edmund L. Peters ◽  
Dennis W. Gaines ◽  
...  

The effects of 2-chioroethanol (2-CE) on rat tissue following in vitro and in vivo exposure were studied. At concentrations as low as 2.5 mg/ml, protein synthesis in liver slices was inhibited; at concentrations of 25 mg/ml and above, RNA synthesis and respiration were also impaired. Single oral doses of 2-CE to young adult rats at levels of 15-40 mg/kg body weight depressed liver nonprotein sulfhydryl (GSH) concentration and liver protein but not RNA synthesis. Liver lipid was increased by 7 hr after a single oral dose of 30 mg/kg. The time courses and dose-response relationship for GSH depletion and restoration and for protein synthesis inhibition and recovery were similar. The livers of female rats were more sensitive than the livers of male rats to the effects of 2-CE. Protein synthesis was also depressed in kidneys of 2-CE-treated male rats but at higher doses than those needed for this effect to occur in livers of the same animals. Liver polysome disaggregation also occurred after oral 2-CE doses of 20 mg/kg and greater. The effects of 2-CE on ribosome profiles and protein synthesis were at least partially reversed by concurrent intraperitoneal administration of cysteine. The possible relationship of these findings to a role of GSH in protein synthesis is discussed.


2012 ◽  
Vol 303 (10) ◽  
pp. E1252-E1263 ◽  
Author(s):  
David García-Galiano ◽  
Rafael Pineda ◽  
Juan Roa ◽  
Francisco Ruiz-Pino ◽  
Miguel A. Sánchez-Garrido ◽  
...  

Kisspeptins (Kp), products of the Kiss1 gene, have emerged as essential elements in the control of GnRH neurons and gonadotropic secretion. However, despite considerable progress in the field, to date limited attention has been paid to elucidate the potential interactions of Kp with other neurotransmitters known to centrally regulate the gonadotropic axis. We characterize herein the impact of manipulations of key aminoacidergic (glutamate and GABA), peptidergic (NKB, Dyn, and MCH), and gaseous [nitric oxide (NO)] neurotransmission on gonadotropin responses to Kp-10 in male rats. Blockade of ionotropic glutamate receptors (of the NMDA and non-NMDA type) variably decreased LH responses to Kp-10, whereas activation of both ionotropic and metabotropic receptors, which enhanced LH and FSH release per se, failed to further increase gonadotropin responses to Kp-10. In fact, coactivation of metabotropic receptors attenuated LH and FSH responses to Kp-10. Selective activation of GABAA receptors decreased Kp-induced gonadotropin secretion, whereas their blockade elicited robust LH and FSH bursts and protracted responses to Kp-10 when combined with GABAB receptor inhibition. Blockade of Dyn signaling (at κ-opioid receptors) enhanced LH responses to Kp-10, whereas activation of Dyn and NKB signaling modestly reduced Kp-induced LH and FSH release. Finally, MCH decreased basal LH secretion and modestly reduced FSH responses to Kp-10, whereas LH responses to Kp-10 were protracted after inhibition of NO synthesis. In summary, we present herein evidence for the putative roles of glutamate, GABA, Dyn, NKB, MCH, and NO in modulating gonadotropic responses to Kp in male rats. Our pharmacological data will help to characterize the central interactions and putative hierarchy of key neuroendocrine pathways involved in the control of the gonadotropic axis.


Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1902-1913 ◽  
Author(s):  
R. Pineda ◽  
D. Garcia-Galiano ◽  
M. A. Sanchez-Garrido ◽  
M. Romero ◽  
F. Ruiz-Pino ◽  
...  

Identification of RF-amide-related peptides (RFRP), as putative mammalian orthologs of the avian gonadotropin-inhibitory hormone, has drawn considerable interest on its potential effects and mechanisms of action in the control of gonadotropin secretion in higher vertebrates. Yet, these analyses have so far relied mostly on indirect approaches, while direct assessment of their physiological roles has been hampered by the lack of suitable antagonists. RF9 was recently reported as a selective and potent antagonist of the receptors for RFRP (RFRPR) and the related neuropeptides, neuropeptide FF (NPFF) and neuropeptide AF (NPFF receptor). We show here that RF9 possesses very strong gonadotropin-releasing activities in vivo. Central administration of RF9 evoked a dose-dependent increase of LH and FSH levels in adult male and female rats. Similarly, male and female mice responded to intracerebroventricular injection of RF9 with robust LH secretory bursts. In rats, administration of RF9 further augmented the gonadotropin-releasing effects of kisspeptin, and its stimulatory effects were detected despite the prevailing suppression of gonadotropin secretion by testosterone or estradiol. In fact, blockade of estrogen receptor-α partially attenuated gonadotropin responses to RF9. Finally, systemic administration of RF9 modestly stimulated LH secretion in vivo, although no direct effects in terms of gonadotropin secretion were detected at the pituitary in vitro. Altogether, these data are the first to disclose the potent gonadotropin-releasing activity of RF9, a selective antagonist of RFRP (and NPFF) receptors. Our findings support a putative role of the RFRP/gonadotropin-inhibitory hormone system in the central control of gonadotropin secretion in mammals and have interesting implications concerning the potential therapeutic indications and pharmacological effects of RF9.


2005 ◽  
Vol 289 (5) ◽  
pp. H1843-H1850 ◽  
Author(s):  
Ali Razmara ◽  
Diana N. Krause ◽  
Sue P. Duckles

Activation of inflammatory mechanisms contributes to cerebrovascular pathophysiology. Male gender is associated with increased stroke risk, yet little is known about the effects of testosterone in the cerebral circulation. Therefore, we explored the impact of testosterone treatment on cerebrovascular inflammation with both in vivo and in vitro models of inflammation. We hypothesized that testosterone would augment the expression of two vascular markers of cellular inflammation, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Using four groups of male rats [intact, orchiectomized (ORX), and ORX treated with either testosterone (ORXT) or the testosterone metabolite 17β-estradiol (ORXE)], we determined effects of the sex hormones on cerebrovascular inflammation after intraperitoneal LPS injection. Western blot analysis showed that induction of inflammatory markers was increased in cerebral blood vessels from ORXT rats compared with intact or ORX rats. In contrast, in cerebral blood vessels from ORXE rats, there was a significant decrease in endotoxin-induced COX-2 and iNOS protein levels. Confocal microscopy of cerebral blood vessels from ORXT rats showed increased COX-2 and iNOS immunoreactivity in both endothelial and smooth muscle cells after LPS treatment. In vitro incubation with LPS also induced COX-2 in pial vessels isolated from the four animal treatment groups, with the greatest induction observed in ORXT vessels compared with the ORX and ORXE groups. Production of PGE2, a principal COX-2-derived prostaglandin end product, was also greatest in cerebral vessels isolated from ORXT rats. In conclusion, testosterone increases cerebrovascular inflammation; this effect may contribute to stroke differences between men and women.


Sign in / Sign up

Export Citation Format

Share Document