Effect of sequential infusions of glucagon and epinephrine on glucose turnover in the dog.

1978 ◽  
Vol 235 (3) ◽  
pp. E287 ◽  
Author(s):  
L Saccà ◽  
R Sherwin ◽  
P Felig

Conscious dogs were infused with 1) glucagon (3 ng/kg.min) alone for 120 min followed by glucagon plus epinephrine (0.1 microgram/kg.min) for 60 min and 2) epinephrine alone (150 min) followed by epinephrine plus glucagon for 90 min. Glucagon alone caused a 10--15 mg/dl rise in plasma glucose and a 45% increase in glucose production that returned to baseline by 75--120 min. After addition of epinephrine, glucose production rose again by 80%. Infusion of epinephrine alone resulted in unchanged plasma glucagon levels, a 60--70 mg/dl rise in plasma glucose, and an 80--100% rise in glucose production that returned to baseline by 60--120 min. When glucagon was added, glucose output promptly rose again by 85%. When glucagon was infused alone, there was a rise in glucose uptake, whereas, with epinephrine, glucose uptake failed to rise and glucose clearance fell by 35--50%. We conclude that 1) hepatic refractoriness to persistent elevations of glucagon or epinephrine is specific for the hormone infused; 2) epinephrine stimulates glucose production in the conscious dog in the absence of a rise in plasma glucagon; 3) the hyperglycemic response to glucagon or epinephrine is determined in part by accompanying changes in glucose utilization.

1996 ◽  
Vol 270 (6) ◽  
pp. E1015-E1021 ◽  
Author(s):  
G. Van Dijk ◽  
S. Lindskog ◽  
J. J. Holst ◽  
A. B. Steffens ◽  
B. Ahren

The influences of glucagon-like peptide-I-(7-36) amide (GLP-I; 15 mumol. kg-1.min-1) on glucose turnover were studied in freely moving Wistar rats. In fed rats, GLP-1 reduced plasma glucose (from 7.3 +/- 0.2 to 5.6 +/- 0.3 mmol/l; P = 0.017), increased plasma insulin (from 20 +/- 3 to 89 +/- 11 mU/l; P = 0.002), and reduced plasma glucagon (from 44 +/- 1 to 35 +/- 2 pg/ml; P = 0.009) and glucose appearance rate (Ra; from 3.9 +/- 0.2 to 1.7 +/- 0.7 micromol.min-1. 100 g-1 after 30 min; P = 0.049) without affecting glucose disappearance rate (Rd). The glucose clearance rate (MCR) was increased (P = 0.048). In 48-h-fasted rats, GLP-I reduced plasma glucose (from 5.0 +/- 0.2 to 4.4 +/- 0.3 mmol/l; P = 0.035) and increased plasma insulin (from 4 +/- 1 to 25 +/- 10 mU/l; P = 0.042) and plasma glucagon (from 43 +/- 3 to 61 +/- 7 pg/ml; P = 0.046). Ra and Rd were not significantly affected, although Ra was lower than Rd after 15-30 min (P = 0.005) and MCR was increased (P = 0.049). Thus GLP-I reduces Ra in fed rats and increases MCR in fed and fasted rats. The reduced Ra seems mediated by an increased insulin-to-glucagon ratio; the increased glucose clearance seems dependent on insulin and a peripheral effect of GLP-I.


1979 ◽  
Vol 236 (2) ◽  
pp. E113
Author(s):  
L Saccà ◽  
R Sherwin ◽  
P Felig

Glucose kinetics were measured using [3-3H]glucose in conscious dogs during the infusion of: 1) glucagon alone; 2) glucagon plus somatostatin with insulin replacement; 3) epinephrine alone; and 4) epinephrine plus somatostatin with insulin and glucagon replacement. Infusion of glucagon alone resulted in a 10-15 mg/dl rise in plasma glucose and a transient 45% rise in glucose production. When somatostatin and insulin were added, a four- to fivefold greater rise in plasma glucose and glucose production was observed. Glucagon levels were comparable to those achieved with infusion of glucagon alone, whereas peripheral insulin levels increased three- to fourfold above baseline, suggesting adequate replacement of preinfusion portal insulin levels. Infusion of epinephrine alone produced a 40% rise in plasma glucose and a 100% rise in glucose production. When somatostatin, insulin, and glucagon were added to epinephrine, the rise in glucose production was reduced in 65% despite replacement of glucagon levels and presumably mild portal insulin deficiency. These findings suggest that somatostatin: 1) potentiates the stimulatory effect of physiologic hyperglucagonemia on glucose production independent of insulin availability and 2) blunts the stimulatory effect of physiologic increments of epinephrine independent of glucagon availability.


1988 ◽  
Vol 117 (4) ◽  
pp. 457-462 ◽  
Author(s):  
Ralph W. Stevenson ◽  
Nowell Stebbing ◽  
Theodore Jones ◽  
Keith Carr ◽  
Peter M. Jones ◽  
...  

Abstract. hGH32-38 was tested to determine if the peptide could affect hepatic glucose production in the conscious dog under basal conditions (euglycemia) or if it could enhance glucose uptake when hyperglycemia was induced. hGH32-38 (1.6 nmol · kg−1 · min−1) or vehicle was infused in a cross-over design study into each of 4 conscious 16 h-fasted dogs for 3 h (0–180 min) following a 40 min control period. At 90 min, plasma glucose was raised to and maintained at 9.4 mmol/l by glucose infusion for 3 h (until 270 min). Neither hGH32-38 nor vehicle infusion had a significant effect on insulin and glucagon levels or on tracer determined ([3-3H]glucose) glucose production. As a result, neither treatment changed plasma glucose (5.72 ± 0.17 to 5.78 ± 0.17 mmol/l with hGH32-38; 5.50 ± 0.22 to 5.50 ± 0.17 mmol/l with vehicle). Induction of hyperglycemia (9.4 mmol/l) caused glucagon concentrations to fall similarly to about 50 ng/l with and without hGH32-38. Insulin rose to similar levels in both protocols, yet more glucose was required to maintain the same hyperglycemia with hGH32-38 (135– 180 min) (74.9 ± 12.7 vs 43.7 ± 7.1 μmol · kg−1 · min−1, P < 0.05). In summary, hGH32-38 significantly increased glucose disposition during hyperglycemia and this effect may be attributed to enhanced insulin action or to an insulin independent action of the peptide.


1991 ◽  
Vol 260 (2) ◽  
pp. E203-E212 ◽  
Author(s):  
P. De Feo ◽  
G. Perriello ◽  
E. Torlone ◽  
C. Fanelli ◽  
M. M. Ventura ◽  
...  

To assess the counterregulatory role of glucagon and to test the hypothesis that catecholamines can largely compensate for an impaired glucagon response, four studies were performed in seven normal volunteers. In all studies, insulin was infused subcutaneously (15 mU.m-2.min-1) and increased circulating insulin approximately twofold to levels (26 +/- 1 microU/ml) observed with intensive insulin therapy. In study 1, plasma glucose fluxes (D-[3-3H]glucose) and plasma substrate and counterregulatory hormone concentrations were simply monitored; plasma glucose decreased from 87 +/- 2 mg/dl and plateaued at 51 +/- 2 mg/dl for 3 h. In study 2 [pituitary-adrenal-pancreatic (PAP) clamp], secretion of insulin and counterregulatory hormones (except for catecholamines) was prevented by somatostatin (0.5 mg/h i.v.) and metyrapone (0.5 g/4 h per os), and glucagon, cortisol, and growth hormone were reinfused to reproduce the concentrations of study 1. In study 3 (lack of glucagon response), the PAP clamp was performed with maintenance of plasma glucagon at basal levels, and glucose was infused whenever needed to reproduce plasma glucose concentration of study 2. Study 4 was identical to study 3, but exogenous glucose was not infused. The PAP clamp (study 2) reproduced glucose concentrations and fluxes observed in study 1. In studies 3 and 4, isolated lack of glucagon response did not affect glucose utilization but caused an early and persistent decrease in hepatic glucose production (approximately 60%) that caused plasma glucose to decrease to 38 +/- 2 mg/dl (P less than 0.01 vs. control 62 +/- 2 mg/dl), despite compensatory increases in plasma epinephrine. We conclude that, in a model of clinical hypoglycemia, glucagon's effect on hepatic glucose production is a dominant counterregulatory factor in humans and that its absence cannot be compensated for by increased epinephrine secretion.


1989 ◽  
Vol 256 (5) ◽  
pp. E651-E661 ◽  
Author(s):  
P. J. Boyle ◽  
S. D. Shah ◽  
P. E. Cryer

To dissect the mechanisms of the prevention of hypoglycemia during fasting, eight normal humans were studied after overnight and 3-day fasts. Prolonged fasting resulted in the expected decrements in base-line glucose production and plasma glucose, insulin, and C-peptide and increments in plasma glucagon, epinephrine, norepinephrine, growth hormone, and cortisol. After the overnight and 3-day fasts, insulin restoration (0.2 mU.kg-1.min-1) alone resulted in transient decrements in glucose production and only 15 and 19% decrements in plasma glucose, respectively. Selective glucagon deficiency (somatostatin infusion with insulin and growth hormone replacement) resulted in transient decrements in glucose production and additional 24 and 29% decrements in plasma glucose, respectively. Notably, plasma glucose plateaued under both fasting conditions in both instances. Combined alpha- and beta-adrenergic blockade (phentolamine and propranolol infusions) alone had no effect on glycemia under either fasting condition. However, progressive hypoglycemia developed during adrenergic blockade coupled with glucagon deficiency after the overnight fast (85 +/- 2 to 48 +/- 4 mg/dl, P less than 0.001) and after the 3-day fast (65 +/- 2 to 33 +/- 1 mg/dl, P less than 0.001). These were the result of both decrements in glucose production and increments in glucose clearance. Thus we conclude that during fasting 1) the prevention of hypoglycemia is not due solely to decreased insulin secretion. 2) Glucagon plays a primary counterregulatory role. Sympathochromaffin catecholamines are not normally critical but compensate and become critical when glucagon is deficient. Adrenomedullary epinephrine is probably the relevant catecholamine. 3) Other hormones, neurotransmitters, or substrate effects may, or may not, be involved; if they are, they appear to stand low in the hierarchy of glucoregulatory factors.


1991 ◽  
Vol 124 (6) ◽  
pp. 637-645 ◽  
Author(s):  
Ole Hother-Nielsen ◽  
Henning Beck-Nielsen

Abstract. Fasting hyperglycemia in Type II (non-insulin-dependent) diabetes has been suggested to be due to hepatic overproduction of glucose and reduced glucose clearance. We studied 22 patients (10 lean and 12 obese) with newly diagnosed mild diabetes mellitus (fasting plasma glucose <15 mmol/l, urine ketone bodies <1 mmol/l), and two age- and weight-matched groups of non-diabetic control subjects. Glucose turnover rates and sensitivity to insulin were determined using adjusted primed-continuous [3-3H]glucose infusion and the hyperinsulinemic euglycemic clamp technique. Insulin-stimulated glucose utilization was reduced in both diabetic groups (lean patients: 313±35 vs 531±22 mg·m−2·min−1, p<0.01;obesepatients:311±28vs453±26mg·m−2·min−1, p<0.01). Basal plasma glucose concentrations decreased 0.43±0.05 mmol/l per h (p<0.01). Glucose production rates were smaller than glucose utilization rates (lean patients: 87±3 vs 94±3 mg·m−2·min−1, p<0.01; obese patients: 79±5 vs 88±5 mg·m−2 ·min−1, p<0.01), were not correlated to basal glucose or insulin concentrations, and were not different from normal (lean controls: 87±4 mg·−2·min−1; obese controls: 80±5 mg·m−2·min−1). These results suggest that the basal state in the diabetic patients is a compensated condition where glucose turnover rates are maintained near normal despite defects in insulin sensitivity.


1990 ◽  
Vol 258 (4) ◽  
pp. E701-E707 ◽  
Author(s):  
P. W. Clark ◽  
A. B. Jenkins ◽  
E. W. Kraegen

Recent reports conflict on the effect that pentobarbital anesthesia has on basal glucose turnover in the rat. It is also unclear whether pentobarbital alters insulin suppressibility of hepatic glucose production (Ra). We examined these issues by performing basal and hyperinsulinemic euglycemic clamp studies in anesthetized and conscious animals. Ra and glucose utilization (Rd) were estimated using a steady-state infusion of 3-[3H]glucose. Pentobarbital anesthesia in normothermic rats transiently elevated plasma glucose but resulted in a sustained suppression of basal Ra (10.4 +/- 0.3 vs. conscious 13.2 +/- 0.9 mg.kg-1.min-1, P less than 0.05). In the insulin-stimulated state (110 mU/l), despite similar plasma glucose and insulin levels, clamp glucose infusion rate was significantly reduced in anesthetized animals (11.1 +/- 0.9 vs. conscious 23.6 +/- 1.3 mg.kg-1.min-1, P less than 0.001). This can be attributed to both a significantly lower insulin-stimulated Rd (15.4 +/- 1.3 vs. conscious 22.8 +/- 1.4 mg.kg-1.min-1, P less than 0.005) and reduced insulin suppression of Ra (4.3 +/- 0.8 vs. conscious -0.8 +/- 0.5 mg.kg-1.min-1, P less than 0.001; i.e., anesthetized 59% vs. conscious 100% reduction of basal Ra). Thus pentobarbital anesthesia significantly reduces basal Ra and induces hepatic insulin resistance (reduces Ra suppressibility). Pentobarbital effects are not dependent on induced hypothermia, but this exacerbates the metabolic perturbation. Caution should be used in extrapolating from the anesthetized to the conscious state.


1979 ◽  
Vol 237 (6) ◽  
pp. E487
Author(s):  
L Sacc� ◽  
N Eigler ◽  
P E Cryer ◽  
R S Sherwin

The effect of glucagon and/or epinephrine on the response to physiologic insulin infusion was evaluated in dogs. Insulin alone produced a transient fall (50%) in glucose output, a threefold rise in glucose clearance, and a decline in plasma glucose, which then stabilized (40--45 mg/dl) afer 1 h. Glucagon infusion prevented the fall in glucose output, but had no effect on insulin-induced elevations in glucose clearance. The fall in plasma glucose was delayed (20 min), but late hypoglycemia was unaltered. Epinephrine infusion blocked the fall in glucose output as well as the insulin-induced rise in glucose clearance and uptake. Thus, while epinephrine and glucagon were equally effective in preventing the fall in glucose output induced by insulin, epinephrine was more effective in preventing insulin-induced hypoglycemia by virtue of its direct inhibitory action on insulin-stimulated glucose utilization. Simultaneous addition of glucagon and epinephrine increased glucose output twofold, suppressed glucose clearance, and caused a 15--30 mg/dl increase in plasma glucose despite ongoing hyperinsulinemia. Our data thus indicate that synergistic hormone interactions may play a role in the counterregulation of insulin hypoglycemia.


1980 ◽  
Vol 238 (5) ◽  
pp. E467-E472 ◽  
Author(s):  
R. A. Rizza ◽  
M. W. Haymond ◽  
J. M. Miles ◽  
C. A. Verdonk ◽  
P. E. Cryer ◽  
...  

Epinephrine (50 ng . kg-1 . min-1) was infused for 120 min in seven normal volunteers alone (combined alpha- and beta-adrenergic stimulation), with propranolol (alpha-adrenergic stimulation), and with propranolol plus phentolamine (alpha-adrenergic blockade superimposed on alpha-adrenergic stimulation). During alpha-adrenergic stimulation, plasma glucose and glucose production increased 32 and 42% less, respectively, than during infusion of epinephrine alone, whereas glucose clearance was suppressed comparably. Plasma insulin decreased during alpha-adrenergic stimulation but increased during infusion of epinephrine alone. Plasma epinephrine was threefold greater during infusion of epinephrine plus propranolol than during infusion of epinephrine alone. When alpha-adrenergic blockade was superimposed on alpha-adrenergic stimulation, the increases in plasma glucose and glucose production as well as the decreases in plasma insulin and glucose clearance observed during alpha-adrenergic stimulation were virtually abolished, whereas plasma epinephrine levels were unaltered. These results indicate that in man epinephrine can cause hyperglycemia via both alpha- and beta-adrenergic stimulation of glucose production and suppression of glucose clearance, either directly or indirectly. alpha-Adrenergic effects on glucose production and clearance may be mediated by inhibition of insulin secretion.


2005 ◽  
Vol 98 (3) ◽  
pp. 930-939 ◽  
Author(s):  
Michael J. Christopher ◽  
Christian Rantzau ◽  
Glenn McConell ◽  
Bruce E. Kemp ◽  
Frank P. Alford

The separate impacts of the chronic diabetic state and the prevailing hyperglycemia on plasma substrates and hormones, in vivo glucose turnover, and ex vivo skeletal muscle (SkM) during exercise were examined in the same six dogs before alloxan-induced diabetes (prealloxan) and after 4–5 wk of poorly controlled hyperglycemic diabetes (HGD) in the absence and presence of ∼300-min phlorizin-induced (glycosuria mediated) normoglycemia (NGD). For each treatment state, the ∼15-h-fasted dog underwent a primed continuous 150-min infusion of [3-3H]glucose, followed by a 30-min treadmill exercise test (∼65% maximal oxygen capacity), with SkM biopsies taken from the thigh (vastus lateralis) before and after exercise. In the HGD and NGD states, preexercise hepatic glucose production rose by 130 and 160%, and the metabolic clearance rate of glucose (MCRg) fell by 70 and 37%, respectively, compared with the corresponding prealloxan state, but the rates of glucose uptake into peripheral tissues (Rdtissue) and total glycolysis (GF) were unchanged, despite an increased availability of plasma free fatty acid in the NGD state. Exercise-induced increments in hepatic glucose production, Rdtissue, and plasma-derived GF were severely blunted by ∼30–50% in the NGD state, but increments in MCRg remained markedly reduced by ∼70–75% in both diabetic states. SkM intracellular glucose concentrations were significantly elevated only in the HGD state. Although Rdtissue during exercise in the diabetic states correlated positively with preexercise plasma glucose and insulin and GF and negatively with preexercise plasma free fatty acid, stepwise regression analysis revealed that an individual's preexercise glucose and GF accounted for 88% of Rdtissue during exercise. In conclusion, the prevailing hyperglycemia in poorly controlled diabetes is critical in maintaining a sufficient supply of plasma glucose for SkM glucose uptake during exercise. During phlorizin-induced NGD, increments in both Rdtissue and GF are impaired due to a diminished fuel supply from plasma glucose and a sustained reduction in increments of MCRg.


Sign in / Sign up

Export Citation Format

Share Document