peripheral effect
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 4)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Toru Kawada ◽  
Takuya Nishikawa ◽  
Yohsuke Hayama ◽  
Meihua Li ◽  
Can Zheng ◽  
...  

AbstractClonidine is a first-generation central antihypertensive that reduces sympathetic nerve activity (SNA). Although clonidine also exerts peripheral vasoconstriction, the extent to which this vasoconstriction offsets the centrally mediated arterial pressure (AP)-lowering effect remains unknown. In anesthetized rats (n = 8), we examined SNA and AP responses to stepwise changes in carotid sinus pressure under control conditions and after intravenous low-dose (2 μg/kg) and high-dose clonidine (5 μg/kg). In the baroreflex equilibrium diagram analysis, the operating-point AP under the control condition was 115.2 (108.5–127.7) mmHg [median (25th–75th percentile range)]. While the operating-point AP after low-dose clonidine was not significantly different with or without the peripheral effect, the operating-point AP after high-dose clonidine was higher with the peripheral effect than without [81.3 (76.2–98.2) mmHg vs. 70.7 (57.7–96.9), P < 0.05]. The vasoconstrictive effect of clonidine partly offset the centrally mediated AP-lowering effect after high-dose administration.


2020 ◽  
Vol 6 (45) ◽  
pp. eaax9538
Author(s):  
Sven Vanneste ◽  
Anusha Mohan ◽  
Hye Bin Yoo ◽  
Yuefeng Huang ◽  
Alison M. Luckey ◽  
...  

An ongoing debate surrounding transcranial direct current stimulation (tDCS) of the scalp is whether it modulates brain activity both directly and in a regionally constrained manner enough to positively affect symptoms in patients with neurological disorders. One alternative explanation is that direct current stimulation affects neural circuits mainly indirectly, i.e., via peripheral nerves. Here, we report that noninvasive direct current stimulation indirectly affects neural circuits via peripheral nerves. In a series of studies, we show that direct current stimulation can cause activation of the greater occipital nerve (ON-tDCS) and augments memory via the ascending fibers of the occipital nerve to the locus coeruleus, promoting noradrenaline release. This noradrenergic pathway plays a key role in driving hippocampal activity by modifying functional connectivity supporting the consolidation of a memory event.


2020 ◽  
Vol 21 (8) ◽  
pp. 2936 ◽  
Author(s):  
Caterina Fede ◽  
Carmelo Pirri ◽  
Lucia Petrelli ◽  
Diego Guidolin ◽  
Chenglei Fan ◽  
...  

The demonstrated expression of endocannabinoid receptors in myofascial tissue suggested the role of fascia as a source and modulator of pain. Fibroblasts can modulate the production of the various components of the extracellular matrix, according to type of stimuli: physical, mechanical, hormonal, and pharmacological. In this work, fascial fibroblasts were isolated from small samples of human fascia lata of the thigh, collected from three volunteer patients (two men, one woman) during orthopedic surgery. This text demonstrates for the first time that the agonist of cannabinoid receptor 2, HU-308, can lead to in vitro production of hyaluronan-rich vesicles only 3–4 h after treatment, being rapidly released into the extracellular environment. We demonstrated that these vesicles are rich in hyaluronan after Alcian blue and Toluidine blue stainings, immunocytochemistry, and transmission electron microscopy. In addition, incubation with the antagonist AM630 blocked vesicles production by cells, confirming that release of hyaluronan is a cannabinoid-mediated effect. These results may show how fascial cells respond to the endocannabinoid system by regulating and remodeling the formation of the extracellular matrix. This is a first step in our understanding of how therapeutic applications of cannabinoids to treat pain may also have a peripheral effect, altering the biosynthesis of the extracellular matrix in fasciae and, consequently, remodeling the tissue and its properties.


2017 ◽  
Vol 59 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Edra London ◽  
Maria Nesterova ◽  
Constantine A Stratakis

The cAMP-dependent protein kinase (PKA) is an essential regulator of lipid and glucose metabolism that plays a critical role in energy homeostasis. The impact of diet on PKA signaling has not been defined, although perturbations in individual PKA subunits are associated with changes in adiposity, physical activity and energy intake in mice and humans. We hypothesized that a high fat diet (HFD) would elicit peripheral and central alterations in the PKA system that would differ depending on length of exposure to HFD; these differences could protect against or promote diet-induced obesity (DIO). 12-week-old C57Bl/6J mice were randomly assigned to a regular diet or HFD and weighed weekly throughout the feeding studies (4 days, 14 weeks; respectively), and during killing. PKA activity and subunit expression were measured in liver, gonadal adipose tissue (AT) and brain. Acute HFD-feeding suppressed basal hepatic PKA activity. In contrast, hepatic and hypothalamic PKA activities were significantly increased after chronic HFD-feeding. Changes in AT were more subtle, and overall, altered PKA regulation in response to chronic HFD exposure was more profound in female mice. The suppression of hepatic PKA activity after 4 day HFD-feeding was indicative of a protective peripheral effect against obesity in the context of overnutrition. In response to chronic HFD-feeding, and with the development of DIO, dysregulated hepatic and hypothalamic PKA signaling was a signature of obesity that is likely to promote further metabolic dysfunction in mice.


e-Neuroforum ◽  
2017 ◽  
Vol 23 (1) ◽  
Author(s):  
Thomas Künzel ◽  
Hermann Wagner

Abstract:Descending connections are present in many sensory systems and support adaptive information processing. This allows the sensory brain to code a wider range of inputs. A well characterized descending system is the olivo-cochlear cholinergic innervation of the inner ear, which mediates a reduction of the sensitivity of the inner ear upon perception of intense sounds. Because this inhibits the response to background noise, the olivo-cochlear system supports detection of transient sound events. Olivo-cochlear neurons also innervate the cochlear nucleus through axon collaterals. Here, acetylcholine increases the excitability of central neurons without reducing their temporal precision. Thus their target neurons in the superior olivary complex can more effectively process binaural temporal cues. We argue that the central effect of the olivo-cochlear system augments the peripheral effect. In addition, olivo-cochlear cholinergic neurons are under top-down control of cortical inputs, providing further adaptability of information processing on the level of the auditory brainstem.


2016 ◽  
Vol 18 ◽  
pp. 3-16 ◽  
Author(s):  
S. J. Jacober ◽  
M. J. Prince ◽  
J. M. Beals ◽  
M. L. Hartman ◽  
Y. Qu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document