Islet cell responses to glucose in human transplanted pancreas

1991 ◽  
Vol 261 (6) ◽  
pp. E800-E808 ◽  
Author(s):  
D. Elahi ◽  
B. A. Clark ◽  
M. McAloon-Dyke ◽  
G. Wong ◽  
R. Brown ◽  
...  

Postsurgery, pancreas transplantation results in alterations of carbohydrate metabolism. Additionally, immunosuppressive therapy impacts on glucose regulation. We evaluated the hormonal and metabolic responses of pancreas allografts, utilizing the hyperglycemic clamp technique coupled with the tritiated glucose methodology, in 11 volunteers who had received simultaneous pancreas-kidney transplantation (P-K) with systemic drainage. Their responses were compared with seven volunteers who had received only a kidney (K) graft and with seven normal control (C) volunteers. Although basal glucose and hepatic glucose output were similar in all three groups, basal insulin, C-peptide, glucagon, and pancreatic polypeptide were highest in the P-K group and lowest in normal subjects. During hyperglycemia, all groups showed a similar characteristic, initial complete suppression of hepatic glucose production, with recovery followed by a later suppression. Peripheral glucose uptake was similar in P-K and C subjects but decreased in K patients. Systemic insulin levels were fourfold higher in the pancreas transplant patients than in healthy subjects. Thus, under basal and hyperglycemic stimulation, 1) hepatic glucose homeostasis is regulated normally, even with pancreatic drainage into the systemic circulation; 2) overall glucose disposal is normal in P-K patients because of marked hyperinsulinemia; and 3) there is loss of tonic inhibition of endocrine pancreatic function secondary to pancreatic denervation.

1997 ◽  
Vol 273 (4) ◽  
pp. E743-E750 ◽  
Author(s):  
Luciano Rossetti ◽  
Wei Chen ◽  
Meizhu Hu ◽  
Meredith Hawkins ◽  
Nir Barzilai ◽  
...  

Glucokinase (GK) catalyzes the phosphorylation of glucose in β-cells and hepatocytes, and mutations in the GK gene have been implicated in a form of human diabetes. To investigate the relative role of partial deficiencies in the hepatic vs. pancreatic GK activity, we examined insulin secretion, glucose disposal, and hepatic glucose production (HGP) in response to hyperglycemia in transgenic mice 1) with one disrupted GK allele, which manifest decreased GK activity in both liver and β-cells (GK+/−), and 2) with decreased GK activity selectively in β-cells (RIP-GKRZ). Liver GK activity was decreased by 35–50% in the GK+/− but not in the RIP-GKRZ compared with wild type (WT) mice. Hyperglycemic clamp studies were performed in conscious mice with or without concomitant pancreatic clamp. In all studies [3-3H]glucose was infused to measure the rate of appearance of glucose and HGP during 80 min of euglycemia (Glc ∼5 mM) followed by 90 min of hyperglycemia (Glc ∼17 mM). During hyperglycemic clamp studies, steady-state plasma insulin concentration, rate of glucose infusion, and rate of glucose disappearance (Rd) were decreased in both GK+/− and RIP-GKRZ compared with WT mice. However, whereas the basal HGP (at euglycemia) averaged ∼22 mg ⋅ kg−1 ⋅ min−1in all groups, during hyperglycemia HGP was suppressed by only 48% in GK+/− compared with ∼70 and 65% in the WT and RIP-GKRZ mice, respectively. During the pancreatic clamp studies, the ability of hyperglycemia per se to increase Rd was similar in all groups. However, hyperglycemia inhibited HGP by only 12% in GK+/−, vs. 42 and 45%, respectively, in the WT and RIP-GKRZ mice. We conclude that, although impaired glucose-induced insulin secretion is common to both models of decreased pancreatic GK activity, the marked impairment in the ability of hyperglycemia to inhibit HGP is due to the specific decrease in hepatic GK activity.


1987 ◽  
Vol 252 (2) ◽  
pp. E230-E236 ◽  
Author(s):  
M. Lavelle-Jones ◽  
M. H. Scott ◽  
O. Kolterman ◽  
A. H. Rubenstein ◽  
J. M. Olefsky ◽  
...  

By using the euglycemic glucose-clamp technique we have observed the effects of comparable low dose proinsulin and insulin infusions on isotopically determined glucose turnover in 20 anesthetized dogs. In each animal somatostatin (SRIF) infusion was used to suppress endogenous pancreatic hormone secretion and basal glucagon was replaced. Peripheral proinsulin (0.083 micrograms X kg-1 X min-1) and insulin (350 microU X kg-1 X min-1) levels 15- to 20-fold higher than insulin on a molar basis, based on previous observations that proinsulin has only 5-10% the biologic potency of insulin. Three groups of infusion studies were performed: SRIF and glucagon (n = 5); SRIF, glucagon, and proinsulin (n = 10); and SRIF, glucagon, and insulin (n = 5). The mean serum proinsulin level of 2.43 +/- 0.36 pmol/ml achieved represented a 17-fold excess compared with the mean serum insulin level of 0.14 +/- 0.03 pmol (20 +/- 4 microU/ml). At these concentrations, both hormones reduced hepatic glucose production rates by approximately 50% to 2.0 +/- 0.2 mg X kg-1 X min-1 and 1.8 +/- 0.5 mg X kg-1 X min-1, respectively. In contrast, proinsulin failed to stimulate peripheral glucose utilization, whereas insulin led to a 2.0 +/- 0.3 mg X kg-1 X min-1 increment (approximately 50% increase) in glucose uptake (P less than 0.05). Thus at low infusion rates proinsulin exerts its effect predominantly by suppressing hepatic glucose production without measurable stimulation of peripheral glucose disposal. In contrast, for a comparable degree of hepatic glucose output suppression, insulin also significantly stimulates glucose disposal.


1982 ◽  
Vol 242 (6) ◽  
pp. E398-E406 ◽  
Author(s):  
N. N. Abumrad ◽  
A. D. Cherrington ◽  
P. E. Williams ◽  
W. W. Lacy ◽  
D. Rabin

The quantitative disposition of an intragastrically administered glucose load was studied in eight conscious 18-h fasted dogs using isotopic and arteriovenous (A-V) techniques. During the control period, the gut utilized 25% of the basal net hepatic glucose output (2.8 +/- 0.2 mg.kg-1.min-1). After glucose ingestion, 80% of the load was absorbed as glucose, 11% was converted across the gut to lactate and alanine, and 4% was oxidized to CO2. Two percent of the load remained in the gut 4 h after glucose administration and 3% was unaccounted for. During the absorptive period, net hepatic glucose balance (NHGB) varied considerably (mean range = output of 1.8 to uptake of 9.1 mg.kg-1.min-1), while endogenous hepatic glucose production (Ra hp) showed a consistent 80% suppression. The total net hepatic glucose uptake during the absorptive period (150 +/- 10 min) accounted for the disposal of 24 +/- 10% of the ingested load, and the amount of glucose escaping the splanchnic bed was 40 +/- 3%. Overall NHGB correlated positively with basal arterial glucose and insulin levels and negatively with basal arterial glycerol and FFA and with peak absorptive arterial glucose and insulin levels. These data suggest that the hepatic response to an ingested glucose load depends in part on the degree of metabolic fast of the animal at the time of glucose ingestion; the latter may be a major determinant of the roles played by the tissues in glucose disposal.


2015 ◽  
Vol 308 (4) ◽  
pp. E306-E314 ◽  
Author(s):  
Satya S. Houin ◽  
Paul J. Rozance ◽  
Laura D. Brown ◽  
William W. Hay ◽  
Randall B. Wilkening ◽  
...  

Reduced fetal glucose supply, induced experimentally or as a result of placental insufficiency, produces an early activation of fetal glucose production. The mechanisms and substrates used to fuel this increased glucose production rate remain unknown. We hypothesized that in response to hypoglycemia, induced experimentally with maternal insulin infusion, the fetal liver would increase uptake of lactate and amino acids (AA), which would combine with hormonal signals to support hepatic glucose production. To test this hypothesis, metabolic studies were done in six late gestation fetal sheep to measure hepatic glucose and substrate flux before (basal) and after [days (d)1 and 4] the start of hypoglycemia. Maternal and fetal glucose concentrations decreased by 50% on d1 and d4 ( P < 0.05). The liver transitioned from net glucose uptake (basal, 5.1 ± 1.5 μmol/min) to output by d4 (2.8 ± 1.4 μmol/min; P < 0.05 vs. basal). The [U-13C]glucose tracer molar percent excess ratio across the liver decreased over the same period (basal: 0.98 ± 0.01, vs. d4: 0.89 ± 0.01, P < 0.05). Total hepatic AA uptake, but not lactate or pyruvate uptake, increased by threefold on d1 ( P < 0.05) and remained elevated throughout the study. This AA uptake was driven largely by decreased glutamate output and increased glycine uptake. Fetal plasma concentrations of insulin were 50% lower, while cortisol and glucagon concentrations increased 56 and 86% during hypoglycemia ( P < 0.05 for basal vs. d4). Thus increased hepatic AA uptake, rather than pyruvate or lactate uptake, and decreased fetal plasma insulin and increased cortisol and glucagon concentrations occur simultaneously with increased fetal hepatic glucose output in response to fetal hypoglycemia.


2002 ◽  
Vol 283 (5) ◽  
pp. E958-E964 ◽  
Author(s):  
Sylvain Cardin ◽  
Konstantin Walmsley ◽  
Doss W. Neal ◽  
Phillip E. Williams ◽  
Alan D. Cherrington

We determined if blocking transmission in the fibers of the vagus nerves would affect basal hepatic glucose metabolism in the 18-h-fasted conscious dog. A pancreatic clamp (somatostatin, basal portal insulin, and glucagon) was employed. A 40-min control period was followed by a 90-min test period. In one group, stainless steel cooling coils (Sham, n = 5) were perfused with a 37°C solution, while in the other (Cool, n = 6), the coils were perfused with −20°C solution. Vagal blockade was verified by heart rate change (80 ± 9 to 84 ± 14 beats/min in Sham; 98 ± 12 to 193 ± 22 beats/min in Cool). The arterial glucose level was kept euglycemic by glucose infusion. No change in tracer-determined glucose production occurred in Sham, whereas in Cool it dropped significantly (2.4 ± 0.4 to 1.9 ± 0.4 mg · kg−1· min−1). Net hepatic glucose output did not change in Sham but decreased from 1.9 ± 0.3 to 1.3 ± 0.3 mg · kg−1· min−1in the Cool group. Hepatic gluconeogenesis did not change in either group. These data suggest that vagal blockade acutely modulates hepatic glucose production by inhibiting glycogenolysis.


1999 ◽  
Vol 276 (4) ◽  
pp. E806-E813
Author(s):  
Dana K. Sindelar ◽  
Kayano Igawa ◽  
Chang A. Chu ◽  
Jim H. Balcom ◽  
Doss W. Neal ◽  
...  

In the present study we compared the hepatic effects of a selective increase in hepatic sinusoidal insulin brought about by insulin infusion into the hepatic artery with those resulting from insulin infusion into the portal vein. A pancreatic clamp was used to control the endocrine pancreas in conscious overnight-fasted dogs. In the control period, insulin was infused via peripheral vein and the portal vein. After the 40-min basal period, there was a 180-min test period during which the peripheral insulin infusion was stopped and an additional 1.2 pmol ⋅ kg−1⋅ min−1of insulin was infused into the hepatic artery (HART, n = 5) or the portal vein (PORT, n = 5, data published previously). In the HART group, the calculated hepatic sinusoidal insulin level increased from 99 ± 20 (basal) to 165 ± 21 pmol/l (last 30 min). The calculated hepatic artery insulin concentration rose from 50 ± 8 (basal) to 289 ± 19 pmol/l (last 30 min). However, the overall arterial (50 ± 8 pmol/l) and portal vein insulin levels (118 ± 24 pmol/l) did not change over the course of the experiment. In the PORT group, the calculated hepatic sinusoidal insulin level increased from 94 ± 30 (basal) to 156 ± 33 pmol/l (last 30 min). The portal insulin rose from 108 ± 42 (basal) to 192 ± 42 pmol/l (last 30 min), whereas the overall arterial insulin (54 ± 6 pmol/l) was unaltered during the study. In both groups hepatic sinusoidal glucagon levels remained unchanged, and euglycemia was maintained by peripheral glucose infusion. In the HART group, net hepatic glucose output (NHGO) was suppressed from 9.6 ± 2.1 μmol ⋅ kg−1⋅ min−1(basal) to 4.6 ± 1.0 μmol ⋅ kg−1⋅ min−1(15 min) and eventually fell to 3.5 ± 0.8 μmol ⋅ kg−1⋅ min−1(last 30 min, P < 0.05). In the PORT group, NHGO dropped quickly ( P < 0.05) from 10.0 ± 0.9 (basal) to 7.8 ± 1.6 (15 min) and eventually reached 3.1 ± 1.1 μmol ⋅ kg−1⋅ min−1(last 30 min). Thus NHGO decreases in response to a selective increase in hepatic sinusoidal insulin, regardless of whether it comes about because of hyperinsulinemia in the hepatic artery or portal vein.


1993 ◽  
Vol 264 (1) ◽  
pp. E1-E10 ◽  
Author(s):  
L. Rossetti ◽  
S. Farrace ◽  
S. B. Choi ◽  
A. Giaccari ◽  
L. Sloan ◽  
...  

Calcitonin gene-related peptide (CGRP) is a neuropeptide that is released at the neuromuscular junction in response to nerve excitation. To examine the relationship between plasma CGRP concentration and intracellular glucose metabolism in conscious rats, we performed insulin (22 pmol.kg-1.min-1) clamp studies combined with the infusion of 0, 20, 50, 100, 200, and 500 pmol.kg-1.min-1 CGRP (plasma concentrations ranging from 2 x 10(-11) to 5 x 10(-9) M). CGRP antagonized insulin's suppression of hepatic glucose production at plasma concentrations (approximately 10(-10) M) that are only two- to fivefold its basal portal concentration. Insulin-mediated glucose disposal was decreased by 20-32% when CGRP was infused at 50 pmol.kg-1.min-1 (plasma concentration 3 x 10(-10) M) or more. The impairment in insulin-stimulated glycogen synthesis in skeletal muscle accounted for all of the CGRP-induced decrease in glucose disposal, while whole body glycolysis was increased despite the reduction in total glucose uptake. The muscle glucose 6-phosphate concentration progressively increased during the CGRP infusions. CGRP inhibited insulin-stimulated glycogen synthase in skeletal muscle with a 50% effective dose of 1.9 +/- 0.36 x 10(-10) M. This effect on glycogen synthase was due to a reduction in enzyme affinity for UDP-glucose, with no changes in the maximal velocity. In vitro CGRP stimulated both hepatic and skeletal muscle adenylate cyclase in a dose-dependent manner. These data suggest that 1) CGRP is a potent antagonist of insulin at the level of muscle glycogen synthesis and hepatic glucose production; 2) inhibition of glycogen synthase is its major biochemical action in skeletal muscle; and 3) these effects are present at concentrations of the peptide that may be in the physiological range for portal vein and skeletal muscle. These data underscore the potential role of CGRP in the physiological modulation of intracellular glucose metabolism.


2020 ◽  
Vol 117 (12) ◽  
pp. 6733-6740 ◽  
Author(s):  
Thiago M. Batista ◽  
Sezin Dagdeviren ◽  
Shannon H. Carroll ◽  
Weikang Cai ◽  
Veronika Y. Melnik ◽  
...  

Insulin action in the liver is critical for glucose homeostasis through regulation of glycogen synthesis and glucose output. Arrestin domain-containing 3 (Arrdc3) is a member of the α-arrestin family previously linked to human obesity. Here, we show thatArrdc3is differentially regulated by insulin in vivo in mice undergoing euglycemic-hyperinsulinemic clamps, being highly up-regulated in liver and down-regulated in muscle and fat. Mice with liver-specific knockout (KO) of the insulin receptor (IR) have a 50% reduction inArrdc3messenger RNA, while, conversely, mice with liver-specific KO ofArrdc3(L-Arrdc3KO) have increased IR protein in plasma membrane. This leads to increased hepatic insulin sensitivity with increased phosphorylation of FOXO1, reduced expression of PEPCK, and increased glucokinase expression resulting in reduced hepatic glucose production and increased hepatic glycogen accumulation. These effects are due to interaction of ARRDC3 with IR resulting in phosphorylation of ARRDC3 on a conserved tyrosine (Y382) in the carboxyl-terminal domain. Thus,Arrdc3is an insulin target gene, and ARRDC3 protein directly interacts with IR to serve as a feedback regulator of insulin action in control of liver metabolism.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Gireesh Dayma

Abstract Background and Aims The thyroid hormone (TH) plays an important role in glucose metabolism. Recently, we showed that the TH improves glycemia control by decreasing cytokines expression in the adipose tissue and skeletal muscle of alloxan-induced diabetic rats, which were also shown to present primary hypothyroidism. In this context, this study aims to investigate whether the chronic treatment of diabetic rats with T3 could affect other tissues that are involved in the control of glucose homeostasis, as the liver and kidney. Method Adult male Wistar rats were divided into nondiabetic, diabetic, and diabetic treated with T3 (1.5 ?g/100 g BW for 4 weeks). Diabetes was induced by alloxan monohydrate (150 mg/kg, BW, i.p.). Animals showing fasting blood glucose levels greater than 250 mg/dL were selected for the study. Results After treatment, we measured the blood glucose, serum T3, T4, TSH, and insulin concentration, hepatic glucose production by liver perfusion, liver PEPCK, GAPDH, and pAKT expression, as well as urine glucose concentration and renal expression of SGLT2 and GLUT2. T3 reduced blood glucose, hepatic glucose production, liver PEPCK, GAPDH, and pAKT content and the renal expression of SGLT2 and increased glycosuria. Conclusion Results suggest that the decreased hepatic glucose output and increased glucose excretion induced by T3 treatment are important mechanisms that contribute to reduce serum concentration of glucose, accounting for the improvement of glucose homeostasis control in diabetic rats.


1994 ◽  
Vol 77 (2) ◽  
pp. 534-541 ◽  
Author(s):  
J. Gao ◽  
W. M. Sherman ◽  
S. A. McCune ◽  
K. Osei

This study utilized the obese male spontaneously hypertensive heart failure rat (SHHF/Mcc-facp), which has metabolic features very similar to human non-insulin-dependent diabetes mellitus. The purpose of this study was to assess the insulin sensitivity and responsiveness of whole body glucose disposal and insulin suppressability of hepatic glucose production with use of the euglycemic-hyperinsulinemic clamp procedure in 12- to 15-wk-old SHHF/Mcc-facp rats at rest (OS) and 2.5 h after a single session of acute exercise (OE). Lean male SHHF/Mcc-facp rats were sedentary (LS) control animals. At least three clamps producing different insulin-stimulated responses were performed on each animal in a randomized order. At this age the obese animals are normotensive and have not developed congestive heart failure. Compared with LS, OS were significantly hyperglycemic and hyperinsulinemic and insulin sensitivity and responsiveness of whole body glucose uptake and insulin suppressability of hepatic glucose production were significantly decreased. Compared with LS and OS, acute exercise significantly decreased resting plasma glucose but did not alter plasma insulin. Compared with OS, acute exercise significantly increased the insulin responsiveness of whole body glucose disposal but did not affect the sensitivity of whole body glucose disposal or insulin suppressability of hepatic glucose production. Compared with LS, however, acute exercise did not “normalize” the insulin responsiveness of whole body glucose disposal. Thus a single acute exercise session improves but does not normalize whole body insulin resistance in the SHHF/Mcc-facp rat.


Sign in / Sign up

Export Citation Format

Share Document