Isolation of rat Leydig cells and precursor forms after administration of ethane dimethane sulfonate

1994 ◽  
Vol 266 (6) ◽  
pp. E975-E979 ◽  
Author(s):  
G. P. Risbridger ◽  
A. Davies

The cytotoxic drug ethane dimethane sulfonate (EDS) has been extensively used as a means of studying the regeneration of Leydig cells in the adult rat testis. This study used the EDS-treated rat testis as a source of material for the isolation of regenerating Leydig cells and their precursors and describes the procedures required for the isolation of these cell preparations. As early as 13-15 days after EDS, cells in the precursor fraction can bind low, but detectable, levels of iodinated purified human chorionic gonadotropin. However, no luteinizing hormone (LH) response was detected in terms of steroid production. The precursor fraction of cells isolated from the EDS-treated rat testis 17-19 days after the administration of EDS was heterogeneous in light-microscopic appearance, but identifiable Leydig-like cells were present. The cells in this fraction were the first to exhibit the ability to respond to LH with the production of detectable levels of the reduced androgen, 5 alpha-androstane-3 alpha,17 beta-diol. The amount of androgen produced by both the Leydig cell and precursor fractions had increased by 21 days after EDS and reached the levels produced by immature adultlike Leydig cells, which can be isolated from the 20-day-old rat testes. These studies demonstrate that steroidogenically responsive precursor forms of Leydig cells can be isolated from the EDS-treated testes 17-19 days after depletion of the adult Leydig cell population.

1981 ◽  
Vol 29 (7) ◽  
pp. 813-816 ◽  
Author(s):  
H Rajaniemi ◽  
M Karjalainen ◽  
M Veijola ◽  
S Ritanen-Kaivamo ◽  
S Kellokumpu ◽  
...  

Localization of receptor-bound human chorionic gonadotropin (hCG) in rat testis was studied by the peroxidase-antiperoxidase (PAP) complex method. The rats were injected with a single intravenous dose (1000 IU) of hCG. Three, 6, 12, and 24 hr after injection the testes were removed for localization of the hormone. The hormone localized to the periphery of the Leydig cells at all observation points. The intensity of the staining varied between the cells, suggesting that the number of receptors or the accessibility of the receptors to the circulating hormone varies from one cell to another. The staining surrounded the Leydig cells unevenly, but no progressive patching or capping was found. This observation suggests that hCG binds preferentially to the cell surface areas directed toward the capillaries. Compatible results were obtained with anti-hCG serum and with antisera against the hCG subunits. These results are consistent with previous observations that the luteinizing hormone (hCG) receptors accessible to the circulating hormone are located at the surface of the Leydig cells.


1977 ◽  
Vol 162 (2) ◽  
pp. 341-346 ◽  
Author(s):  
F H A Janszen ◽  
B A Cooke ◽  
H J van der Molen

The effect of luteinizing hormone (luteotropin) and cycloheximide on specific protein synthesis in rat testis Leydig cells has been investigated. Proteins were labelled with either I114C]leucine, [3H]leucine or [35S]methionine during incubation with Leydig-cell suspensions in vitro. Total protein was extracted from the cells and separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. No detectable increase in the synthesis of specific proteins could be observed after incubation of Leydig cells with luteinizing hormone for up to 1 h. However, after a 2h incubation period, an increase in [35S]methionine incorporation was observed in a protein with an apparent mol.wt. of 21000 (referred to as ‘protein 21’). When, after labelling of this protein with [35S]-methionine, Leydig cells were incubated for another 30min with cycloheximide, no decrease in radioactivity of this protein band was observed, indicating that it does not have a short half-life. However, another protein band was detected, which after incubation with cycloheximide disappeared rapidly, the reaction following first-order kinetics, with a half-life of about 11 min. This protein, with an apparent mol.wt. of 33000 (referred to as “protein 33”), was found to be located in the particulate fraction of the Leydig cell, and could not be demonstrated in other rat testis-cell types or blood cells. No effect of luteinizing hormone on molecular weight, subcellular localization or half-life of protein 33 was observed. A possible role for protein 33 and protein 21 in the mechanism of action of luteinizing hormone on testosterone production of Leydig cells is discussed.


Sign in / Sign up

Export Citation Format

Share Document