scholarly journals Perinatal high-fat diet alters development of GABAA receptor subunits in dorsal motor nucleus of vagus

2019 ◽  
Vol 317 (1) ◽  
pp. G40-G50 ◽  
Author(s):  
Courtney Clyburn ◽  
Caitlin A. Howe ◽  
Amy C. Arnold ◽  
Charles H. Lang ◽  
R. Alberto Travagli ◽  
...  

Perinatal high-fat diet (pHFD) exposure increases the inhibition of dorsal motor nucleus of the vagus (DMV) neurons, potentially contributing to the dysregulation of gastric functions. The aim of this study was to test the hypothesis that pHFD increases the inhibition of DMV neurons by disrupting GABAA receptor subunit development. In vivo gastric recordings were made from adult anesthetized Sprague-Dawley rats fed a control or pHFD (14 or 60% kcal from fat, respectively) from embryonic day 13 (E13) to postnatal day 42 (P42), and response to brainstem microinjection of benzodiazepines was assessed. Whole cell patch clamp recordings from DMV neurons assessed the functional expression of GABAA α subunits, whereas mRNA and protein expression were measured via qPCR and Western blotting, respectively. pHFD decreased basal antrum and corpus motility, whereas brainstem microinjection of L838,417 (positive allosteric modulator of α2/3 subunit-containing GABAA receptors) produced a larger decrease in gastric tone and motility. GABAergic miniature inhibitory postsynaptic currents in pHFD DMV neurons were responsive to L838,417 throughout development, unlike control DMV neurons, which were responsive only at early postnatal timepoints. Brainstem mRNA and protein expression of the GABAA α1,2, and 3 subunits, however, did not differ between control and pHFD rats. This study suggests that pHFD exposure arrests the development of synaptic GABAA α2/3 receptor subunits on DMV neurons and that functional synaptic expression is maintained into adulthood, although cellular localization may differ. The tonic activation of slower GABAA α2/3 subunit-containing receptors implies that such developmental changes may contribute to the observed decreased gastric motility. NEW & NOTEWORTHY Vagal neurocircuits involved in the control of gastric functions, satiation, and food intake are subject to significant developmental regulation postnatally, with immature GABAA receptors expressing slower α2/3-subunits, whereas mature GABAA receptor express faster α1-subunits. After perinatal high-fat diet exposure, this developmental regulation of dorsal motor nucleus of the vagus (DMV) neurons is disrupted, increasing their tonic GABAergic inhibition, decreasing efferent output, and potentially decreasing gastric motility.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Safia Akhtar ◽  
Silas A. Culver ◽  
Helmy M. Siragy

AbstractRecent studies suggested that renal gluconeogenesis is substantially stimulated in the kidney in presence of obesity. However, the mechanisms responsible for such stimulation are not well understood. Recently, our laboratory demonstrated that mice fed high fat diet (HFD) exhibited increase in renal Atp6ap2 [also known as (Pro)renin receptor] expression. We hypothesized that HFD upregulates renal gluconeogenesis via Atp6ap2-PGC-1α and AKT pathway. Using real-time polymerase chain reaction, western blot analysis and immunostaining, we evaluated renal expression of the Atp6ap2 and renal gluconeogenic enzymes, PEPCK and G6Pase, in wild type and inducible nephron specific Atp6ap2 knockout mice fed normal diet (ND, 12 kcal% fat) or a high-fat diet (HFD, 45 kcal% fat) for 8 weeks. Compared with ND, HFD mice had significantly higher body weight (23%) (P < 0.05), renal mRNA and protein expression of Atp6ap2 (39 and 35%), PEPCK (44 and 125%) and G6Pase (39 and 44%) respectively. In addition, compared to ND, HFD mice had increased renal protein expression of PGC-1α by 32% (P < 0.05) and downregulated AKT by 33% (P < 0.05) respectively in renal cortex. Atp6ap2-KO abrogated these changes in the mice fed HFD. In conclusion, we identified novel regulation of renal gluconeogenesis by Atp6ap2 in response to high fat diet via PGC1-α/AKT-1 pathway.


2017 ◽  
Vol 312 (4) ◽  
pp. R501-R510 ◽  
Author(s):  
Xuejie Yi ◽  
Haining Gao ◽  
Dequan Chen ◽  
Donghui Tang ◽  
Wanting Huang ◽  
...  

To explore the role of the testicular leptin and JAK-STAT[leptin (LEP)-JAK-STAT] pathway in testosterone biosynthesis during juvenile stages and exercise for weight loss, male C57BL/6J mice were randomly divided into normal-diet and high-fat diet groups. After 10 wk, mice in the high-fat diet-fed group were further divided randomly into obese control, obese moderate-volume exercise, and obese high-volume exercise groups. Mice in the obese moderate-volume exercise group were provided with 2 h/day, 6 days/wk swimming exercise for 8 wk, and mice in the obese high-volume exercise group underwent twice the amount of daily exercise intervention as the obese moderate-volume exercise group. The results showed that a high-fat diet causes obesity, leptin resistance, inhibition of the testicular LEP-JAK-STAT pathway, decreased mRNA and protein expression of steroidogenic factor-1, steroidogenic acute regulatory protein, and the P-450 side-chain cleavage enzyme, a decrease in the serum testosterone-to-estradiol ratio, and declines in sperm quality parameters. Both moderate and high-volume exercise were able to reduce body fat and increase the mRNA and protein expression of LEP-JAK-STAT, but only moderate exercise significantly increased the mRNA and protein expression of steroidogenic factor-1, steroidogenic acute regulatory protein, and P-450 side-chain cleavage enzyme and significantly reversed the serum testosterone-to-estradiol ratio and sperm quality parameters. These findings suggest that by impairing the testicular LEP-JAK-STAT pathway, early-stage obesity inhibits the biosynthesis of testosterone and sexual development and reduces male reproductive potential. Long-term moderate and high-volume exercise can effectively reduce body fat and improve obesity-induced abnormalities in testicular leptin signal transduction, whereas only moderate-volume exercise can reverse the negative impacts of obesity on male reproductive function.


2021 ◽  
Author(s):  
Lukasz Chrobok ◽  
Jasmin D Klich ◽  
Jagoda S Jeczmien‐Lazur ◽  
Kamil Pradel ◽  
Katarzyna Palus‐Chramiec ◽  
...  

2021 ◽  
Author(s):  
Lukasz Chrobok ◽  
Jasmin D Klich ◽  
Jagoda S Jeczmien-Lazur ◽  
Kamil Pradel ◽  
Katarzyna Palus-Chramiec ◽  
...  

ABSTRACTThe suprachiasmatic nuclei (SCN) of the hypothalamus functions as the brain’s primary circadian clock, but circadian clock genes are also rhythmically expressed in several extra-SCN brain sites where they can exert local temporal control over physiology and behaviour. Recently, we found that the hindbrain dorsal vagal complex possesses strong daily timekeeping capabilities, with the area postrema and nucleus of the solitary tract exhibiting the most robust clock properties. The possibility that the executory part of this complex – the dorsal motor nucleus of the vagus (DMV), also exhibits daily changes has not been extensively studied. The DMV is the source of vagal efferent motoneurons largely responsible for the regulation of gastric motility and emptying and consequently influence meal size and energy homeostasis. We used a combination of multi-channel electrophysiology and patch clamp recordings to gain insight into possible daily variation in these DMV cells and how this is influenced by diet. We found that DMV neurons increase their spontaneous activity, excitability and responsiveness to metabolic neuromodulators at late day which was paralleled with an enhanced synaptic input to these neurons. A high-fat diet typically damps circadian rhythms, but we found that short-term exposure to a high-fat diet paradoxically amplified daily variation of DMV neuronal activity, while blunting their responsiveness to metabolic neuromodulators. In summary, we show for the first time that neural activity at a source of vagal efferents varies with time of day and that this temporal variation is modulated by diet. These findings have clear implications for our understanding of the daily control of parasympathetic outflow.


Sign in / Sign up

Export Citation Format

Share Document