scholarly journals Novel regulation of renal gluconeogenesis by Atp6ap2 in response to high fat diet via PGC1-α/AKT-1 pathway

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Safia Akhtar ◽  
Silas A. Culver ◽  
Helmy M. Siragy

AbstractRecent studies suggested that renal gluconeogenesis is substantially stimulated in the kidney in presence of obesity. However, the mechanisms responsible for such stimulation are not well understood. Recently, our laboratory demonstrated that mice fed high fat diet (HFD) exhibited increase in renal Atp6ap2 [also known as (Pro)renin receptor] expression. We hypothesized that HFD upregulates renal gluconeogenesis via Atp6ap2-PGC-1α and AKT pathway. Using real-time polymerase chain reaction, western blot analysis and immunostaining, we evaluated renal expression of the Atp6ap2 and renal gluconeogenic enzymes, PEPCK and G6Pase, in wild type and inducible nephron specific Atp6ap2 knockout mice fed normal diet (ND, 12 kcal% fat) or a high-fat diet (HFD, 45 kcal% fat) for 8 weeks. Compared with ND, HFD mice had significantly higher body weight (23%) (P < 0.05), renal mRNA and protein expression of Atp6ap2 (39 and 35%), PEPCK (44 and 125%) and G6Pase (39 and 44%) respectively. In addition, compared to ND, HFD mice had increased renal protein expression of PGC-1α by 32% (P < 0.05) and downregulated AKT by 33% (P < 0.05) respectively in renal cortex. Atp6ap2-KO abrogated these changes in the mice fed HFD. In conclusion, we identified novel regulation of renal gluconeogenesis by Atp6ap2 in response to high fat diet via PGC1-α/AKT-1 pathway.

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Dale E Mais ◽  
Thomas Vihtelic ◽  
Chidozie Amuzie ◽  
Steven Denham ◽  
John R Swart ◽  
...  

Small animal models of atherosclerosis are commonly used in drug studies; however, the results often fail to translate into the clinic. A large animal model that more accurately reflects the human disease is needed. We recently developed a transgenic Yucatan pig model in which the LDL receptor (LDLR) gene is knocked out. Five groups of Yucatan pigs (N=4 per group), either wild type (LDLR+/+) or heterozygote (LDLR+/-) were fed a normal diet or a high fat diet for a six month period. One of the heterozygote/high fat diet groups in addition received a daily dose of a statin (atorvastatin) at 3 mg/kg. Every two weeks during the study a variety of clinical chemistry parameters were measured. At study termination, select arteries were collected, stained for lipid deposits and quantitated. In addition, sections of these arteries were prepared for immunohistochemistry to detect selected markers of macrophage infiltration into the atherosclerotic plaques. As expected, pigs fed a high fat diet gained significantly more weight at six months whether they were wild type or LDLR+/-. Atorvastatin appeared to attenuate this weight gain. There were significant increases in total cholesterol, HDL and LDL in pigs fed the high fat diet compared to their corresponding control group. The group receiving the atorvastatin had reduced values of these parameters compared to controls showing that a statin had a beneficial effect on lipid levels even in a high fat diet scenario. VLDL levels were not affected but there were triglyceride changes across the groups. Liver function was unchanged based on total bilirubin and AST while ALT measurements were altered in some of the groups. Immunohistochemistry and histomorphometry was performed on some arteries. Atorvastatin-induced amelioration of hypercholesterolemia in this model underscores its translational utility.


2020 ◽  
Vol 128 (5) ◽  
pp. 1251-1261
Author(s):  
Kelly N. Z. Fuller ◽  
Colin S. McCoin ◽  
Julie Allen ◽  
Shelby Bell-Glenn ◽  
Devin C. Koestler ◽  
...  

This is the first study focusing on hepatic mitochondrial respiratory outcomes in response to lipid overload via a high-fat diet (HFD) combined with intralipid injection. Novel findings include no effect of intralipid injection on mitochondrial outcomes of interest, despite increased circulating lipid concentrations. However, we report pronounced differences in hepatic mitochondrial respiration, complex protein expression, and H2O2 production by sex and BCL-2/adenovirus EIB 19-kDa interacting protein (BNIP3) genotype. Specifically, female mice had lower H2O2 emission globally and on an acute HFD, females had greater hepatic mitochondrial respiration than males, whereas BNIP3 knockout (KO) animals had greater mitochondrial coupling and complex protein expression than wild-type (WT) animals.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3576
Author(s):  
Su Bin Hwang ◽  
Bog-Hieu Lee

Nelumbinis Semen (NS, the seeds of Nelumbo nucifera) extract is a traditional Korean medicine with anti-oxidant activity. The present study examined the anti-obesity and antidiabetic effects of NS powder in high-fat diet (HFD)-induced obese C57BL/6 mice. Mice (n = 8/group) were fed a normal diet (CON), HFD, HFD containing 5% NS powder (HFD-NS5%), or HFD containing 10% NS powder (HFD-NS10%) for 12 weeks. Food intake was relatively higher in groups HFD-NS5% and HFD-NS10%, while the food efficiency ratio was highest in group HFD (p < 0.05). HFD-NS5% reduced the body weight (−39.1%) and fat weight (−26.6%), including epididymal fat and perirenal fat, and lowered the serum triglyceride levels (−20.6%) compared with HFD. Groups HFD-NS5% and HFD-NS10% showed hepatoprotective properties, reducing the serum ALT levels (p < 0.05) and fat globules (size and number) in the liver compared with group HFD. HFD-NS5% and HFD-NS10% regulated the blood glucose, improved the glucose intolerance, and showed a 12.5% and 15.0% reduction in the area under the curve (AUC) of intraperitoneal glucose tolerance test (IPGTT), and a 26.8% and 47.3% improvement in homeostatic model assessment insulin resistance (HOMA-IR), respectively, compared with HFD (p < 0.05). Regarding the expressions of genes related to anti-obesity and antidiabetes, there was a 1.7- and 1.3-fold increase in PPAR-α protein expression, 1.4- and 1.6-fold increase in PPAR-γ protein expression, and 0.7- and 0.6-fold decrease in TNF-α protein expression, respectively, following HFD-NS5% and HFD-NS10% treatments, compared with HFD, and GLUT4 protein expression increased relative to CON (p < 0.05). These results comprehensively provide the fundamental data for NS powder’s functional and health-promoting benefits associated with anti-obesity and antidiabetes.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Joseph Louis Zapater ◽  
Wasim Khan ◽  
Brian T Layden

Abstract Hexokinase domain-containing protein 1 (HKDC1) is a recently discovered putative fifth hexokinase that is widely expressed in a variety of human and mouse tissues. Previous work indicate that HKDC1 is important for whole-body glucose homeostasis and utilization in pregnancy and aging, and suggest roles for HKDC1 in nonalcoholic fatty liver disease development and progression of hepatocellular carcinoma. Prior work in the lab further showed that global heterozygous-deleted HKDC1 mice exhibit blunted uptake of triglycerides following an olive oil bolus compared to wild-type mice, suggesting a role for intestinal HKDC1 expression in intestinal lipid metabolism (unpublished results). To specifically study the significance of intestinal HKDC1 on whole-body glucose and lipid homeostasis, we utilized Cre-mediated recombination of HKDC1 in which Cre was expressed under the control of the villin gene promoter, creating a mouse model in which HKDC1 expression is specifically deleted in the intestinal epithelium. Quantitative RT-PCR data confirmed the knockout of HKDC1 within the mouse intestine in young and aged mice, while HKDC1 expression in other tissues was comparable to wild-type mice. Next, intestinal HKDC1 knockout mice and their wild-type littermate controls were either maintained on a normal diet or were switched to a high fat diet at 6 weeks of age to simulate the state of impaired glucose tolerance, and the effects of intestinal HKDC1 on glucose and lipid homeostasis were analyzed between 28-34 weeks of age. Mice fed a normal diet did not exhibit any differences in serum glucose or triglyceride during oral/intraperitoneal glucose tolerance tests or oral olive oil bolus, respectively, regardless of intestinal HKDC1 status. Interestingly, mice lacking intestinal HKDC1 that were on a high fat diet demonstrated improved overall glycemic control compared to wild-type mice after the administration of an oral glucose load, all while there were no changes in insulin levels, gluconeogenesis or insulin tolerance related to HKDC1 status. Additionally, introduction of an intraperitoneal glucose load to mice fed a high fat diet did not alter glucose control in the presence or absence of intestinal HKDC1. However, high fat diet-fed mice lacking intestinal HKDC1 did not have a significant increase in serum triglyceride following an oral olive oil bolus, while their stool fat and triglyceride content were comparable to wild-type. Collectively, these data indicate that intestinal HKDC1 has important roles in glucose and triglyceride metabolism within the intestinal epithelium, and further suggest a role in whole-body glucose homeostasis and in the development of insulin resistance and diabetes.


2017 ◽  
Vol 312 (4) ◽  
pp. R501-R510 ◽  
Author(s):  
Xuejie Yi ◽  
Haining Gao ◽  
Dequan Chen ◽  
Donghui Tang ◽  
Wanting Huang ◽  
...  

To explore the role of the testicular leptin and JAK-STAT[leptin (LEP)-JAK-STAT] pathway in testosterone biosynthesis during juvenile stages and exercise for weight loss, male C57BL/6J mice were randomly divided into normal-diet and high-fat diet groups. After 10 wk, mice in the high-fat diet-fed group were further divided randomly into obese control, obese moderate-volume exercise, and obese high-volume exercise groups. Mice in the obese moderate-volume exercise group were provided with 2 h/day, 6 days/wk swimming exercise for 8 wk, and mice in the obese high-volume exercise group underwent twice the amount of daily exercise intervention as the obese moderate-volume exercise group. The results showed that a high-fat diet causes obesity, leptin resistance, inhibition of the testicular LEP-JAK-STAT pathway, decreased mRNA and protein expression of steroidogenic factor-1, steroidogenic acute regulatory protein, and the P-450 side-chain cleavage enzyme, a decrease in the serum testosterone-to-estradiol ratio, and declines in sperm quality parameters. Both moderate and high-volume exercise were able to reduce body fat and increase the mRNA and protein expression of LEP-JAK-STAT, but only moderate exercise significantly increased the mRNA and protein expression of steroidogenic factor-1, steroidogenic acute regulatory protein, and P-450 side-chain cleavage enzyme and significantly reversed the serum testosterone-to-estradiol ratio and sperm quality parameters. These findings suggest that by impairing the testicular LEP-JAK-STAT pathway, early-stage obesity inhibits the biosynthesis of testosterone and sexual development and reduces male reproductive potential. Long-term moderate and high-volume exercise can effectively reduce body fat and improve obesity-induced abnormalities in testicular leptin signal transduction, whereas only moderate-volume exercise can reverse the negative impacts of obesity on male reproductive function.


2021 ◽  
Vol 8 ◽  
Author(s):  
Gil Zandani ◽  
Sarit Anavi-Cohen ◽  
Nina Tsybina-Shimshilashvili ◽  
Noa Sela ◽  
Abraham Nyska ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is linked to obesity, type 2 diabetes, hyperlipidemia, and gut dysbiosis. Gut microbiota profoundly affects the host energy homeostasis, which, in turn, is affected by a high-fat diet (HFD) through the liver-gut axis, among others. Broccoli contains beneficial bioactive compounds and may protect against several diseases. This study aimed to determine the effects of broccoli supplementation to an HFD on metabolic parameters and gut microbiome in mice. Male (7–8 weeks old) C57BL/J6 mice were divided into four groups: normal diet (ND), high-fat diet (HFD), high-fat diet+10% broccoli florets (HFD + F), and high-fat diet + 10% broccoli stalks (HFD + S). Liver histology and serum biochemical factors were evaluated. Alterations in protein and gene expression of the key players in lipid and carbohydrate metabolism as well as in gut microbiota alterations were also investigated. Broccoli florets addition to the HFD significantly reduced serum insulin levels, HOMA-IR index, and upregulated adiponectin receptor expression. Conversely, no significant difference was found in the group supplemented with broccoli stalks. Both broccoli stalks and florets did not affect fat accumulation, carbohydrate, or lipid metabolism-related parameters. Modifications in diversity and in microbial structure of proteobacteria strains, Akermansia muciniphila and Mucispirillum schaedleri were observed in the broccoli-supplemented HFD-fed mice. The present study suggests that dietary broccoli alters parameters related to insulin sensitivity and modulates the intestinal environment. More studies are needed to confirm the results of this study and to investigate the mechanisms underlying these beneficial effects.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Feng ◽  
Jianghao Feng ◽  
Lei Wang ◽  
Ai Meng ◽  
Siang Wei ◽  
...  

The aim of this study was to explore the effect of short-chain inulin on cecal microbiota of high-fat diet-fed leptin knockout mice and the different influences of cecal microbiota on wild-type and leptin knockout mice. A total of 18 specific pathogen-free male C57BL/6J wild-type mice and 18 C57BL/6J leptin knockout mice (OB/OB mice) were selected. Mice were divided into six groups according to their genotype: wild-type mice have three groups, including the normal diet group (CT), 60% high-fat diet group (CH), and 60% high fat with 10% short-chain inulin group (CHI); OB/OB mice were also divided into three groups, including the normal diet group (OT), 60% high-fat diet group (OH), and 60% high fat with 10% short-inulin group (OHI). The mice were fed for 8 weeks to analyze the diversity of cecal microbiota. The results show that compared with CH and OH, the variety of cecal microbiota was significantly reduced in CH and OH and further reduced in CHI and OHI. Bifidobacterium and Lactobacillus are the biomarkers in genus level. Dietary short-chain inulin significantly enhanced Bifidobacterium in OHI compared with OH (p &lt; 0.01) and significantly reduced in CHI and compared with CH (p &lt; 0.01). Lactobacillus was significantly enhanced in CHI and OHI compared with CH and OH, respectively (p &lt; 0.01). Blautia was significantly enhanced in CH and OH compared with other groups (p &lt; 0.01). Both Escherichia-Shigella and Enterococcus were significantly reduced in CHI and OHI, compared with CH and OH, respectively (p &lt; 0.05). Escherichia-Shigella was even lower than CT and OT in CHI and OHI. Functional prediction of microbial communities showed that the abundance of amino acid sugar and nucleotide sugar metabolism pathways were significantly enhanced (p &lt; 0.05) in CH and OH, and OH was significantly higher than CH (p &lt; 0.05). Among the leptin knockout groups, PICRUSt2 function prediction showed that the fatty acid metabolism pathway significantly reduced (p &lt; 0.05) in OHI and OT compared with OH. In conclusion, short-chain inulin modulated the dysbiosis induced by high-fat diet, improved probiotics growth and inhibited conditioned pathogenic bacteria, and the influences were significantly different in wild-type and leptin knockout mice.


2020 ◽  
Vol 29 (3) ◽  
pp. 248-255
Author(s):  
Nayoung Ahn

PURPOSE: Exercise improve myocardial cell protection and vascular function through cell repair and suppression of oxidative stress in cardiovascular diseases caused by aging. This study aimed to investigate the effect of combine exercise on HSP70 and SOD1 protein expression of aorta, skeletal muscle and myocardium in high fat diet induced obese aging rats.METHODS: Male 50-week-old Sprague Dawley rats (n=40) were divided into normal diet (ND, n=10), normal diet+exercise (NDEx, n=10), high fat diet (HFD, n=10), and high fat diet+exercise (HFDEx, n=10) groups. After six weeks on a high fat diet to induce obesity, a 12-week combine exercise program was implemented, which combine exercise (treadmill running+ladder climbing) three times a week for 45 minutes per session.RESULTS: Body weight was significantly decreased after 12 weeks combine exercise program compared to the ND group (p<.05) and HFDEx group compared to the HFD group (p<.05), respectively. After completing the 12-week exercise program, heat shock protein 70 (HSP70) and superoxide dismutase 1 (SOD1) expressions were significantly (p<.05) higher in the NDEx group compared to the ND group in the myocardium. Also, SOD1 protein expression was significantly (p<.05) higher in the NDEx group compared to the ND group and HFDEx group compared to the HFD group in the skeletal muscle.CONCLUSIONS: In conclusion, combine exercise intervention of high fat diet-induced obesity resulted in decreased cell repair protein and antioxidant enzyme protein in the myocardium. Therefore, it is thought that combine exercise intervention for obese induced rats improved the cell repair protein and antioxidant enzyme activity of the myocardium.


2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Jiexiu Zhao ◽  
Fei Qin ◽  
Minxiao Xu ◽  
Yanan Dong ◽  
Zhongwei Wang ◽  
...  

Objective  Insulin resistance (IR) is associated with many related health complications. Previous studies demonstrate that heat and exercise independently reduce IR. The purpose of this study was to test the hypothesis that combined exercise and heating is even more favorable in reducing IR. Methods Male Wistar rats were randomly divided into five groups: exercise (NE; n=10), heated (HC; n=10), exercise and heated (HE; n=10), sedentary (NC; n=10), and normal diet plus sedentary (CC; n=10). All but the latter group was fed a high-fat diet (60% calories from fat) for 10 weeks while receiving heat and/or exercise exposure for latter 8 weeks. Following this regimen, protein expression from the soleus and extensor digitorum longus muscles, serum, and brown fat were analyzed using Western blotting. Results Exercise combined with heating shifted the metabolic characteristics of rats on a high-fat diet toward that observed in the rats on a standard diet. Specifically, eight weeks of combined heat and endurance exercise increased PGC-1α, CnA, CaMKIV and p38 MAPK protein expression in the soleus (P < 0.05), insulin protein expression in the serum (P < 0.05), and UCP1 protein expression in the brown fat (P < 0.05), when compared to the high fat fed sedentary group. There were some significant differences in responses (i.e., body weight and Leptin & Adiponectin concentrations) between the combined exercise and heat group relative to the exercise alone group. Conclusions  Exercise combined with heat exposure mitigates the development of IR, presumably from the Irisin pathway. The study provides potential non-pharmaceutical methods for therapeutic treatment of IR.


2016 ◽  
Vol 116 (2) ◽  
pp. 448-455 ◽  
Author(s):  
Meng Suo ◽  
Ping Wang ◽  
Mengyuan Zhang

Diabetic neuropathy is a common complication of diabetes. This study evaluated the role of Fyn kinase and N-methyl-d-aspartate receptors (NMDARs) in the spinal cord in diabetic neuropathy using an animal model of high-fat diet-induced prediabetes. We found that prediabetic wild-type mice exhibited tactile allodynia and thermal hypoalgesia after a 16-wk high-fat diet, relative to normal diet-fed wild-type mice. Furthermore, prediabetic wild-type mice exhibited increased tactile allodynia and thermal hypoalgesia at 24 wk relative to 16 wk. Such phenomena were correlated with increased expression and activation of NR2B subunit of NMDARs, as well as Fyn-NR2B interaction in the spinal cord. Fyn−/− mice developed prediabetes after 16-wk high-fat diet treatment and exhibited thermal hypoalgesia, without showing tactile allodynia or altered expression and activation of NR2B subunit, relative to normal diet-fed Fyn−/− mice. Finally, intrathecal administrations of Ro 25-6981 (selective NR2B subunit-containing NMDAR antagonist) dose-dependently alleviated tactile allodynia, but not thermal hypoalgesia, at 16 and 24 wk in prediabetic wild-type mice. Our results suggested that Fyn-mediated NR2B signaling plays a critical role in regulation of prediabetic neuropathy and that the increased expression/function of NR2B subunit-containing NMDARs may contribute to the progression of neuropathy in type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document