scholarly journals EnteropathogenicEscherichia colidynamically regulates EGFR signaling in intestinal epithelial cells

2014 ◽  
Vol 307 (3) ◽  
pp. G374-G380 ◽  
Author(s):  
Jennifer Lising Roxas ◽  
Katheryn Ryan ◽  
Gayatri Vedantam ◽  
V. K. Viswanathan

The diarrheagenic pathogen enteropathogenic Escherichia coli (EPEC) dynamically modulates the survival of infected host intestinal epithelial cells. In the initial stages of infection, several prosurvival signaling events are activated in host cells. These include the phosphorylation of epidermal growth factor receptor (EGFR) and the consequent activation of the phosphatidylinositol-3 kinase/Akt pathway. While studying this pathway in infected epithelial cells, we observed EGFR depletion at later stages of infection, followed subsequently by a decrease in phospho-EGFR. EGFR loss was not dependent on receptor phosphorylation, or on canonical proteasome- and lysosome-dependent processes. Although a type III secretion mutant (Δ escN) stimulated EGFR phosphorylation, it failed to induce receptor degradation. To identify the specific EPEC effector molecule(s) that influenced EGFR stability, epithelial cells infected with isogenic mutant EPEC strains were examined. An EPEC Δ espF strain failed to induce EGFR degradation, whereas EPEC Δ espZ accentuated receptor loss in infected cells. Given the known and contrasting effects of EspF and EspZ on caspase activation, and the known role of proteases in cleaving EGFR, we explored the effect of caspase inhibitors on infection-dependent EGFR loss. The pan-caspase inhibitor Q-VD-OPh blocked EPEC-induced EGFR cleavage in a dose-dependent manner. Taken together, our data suggest that EPEC EspF stimulates caspase-dependent EGFR cleavage and loss, whereas EspZ inhibits this process. Whereas EGFR phosphorylation contributes to the survival of host cells early in infection, EspF-driven caspase activation and consequent EGFR loss likely induce a precipitous increase in host cell death later in the infectious process.

2010 ◽  
Vol 299 (3) ◽  
pp. G733-G741 ◽  
Author(s):  
Sabine M. Ivison ◽  
Ce Wang ◽  
Megan E. Himmel ◽  
Jared Sheridan ◽  
Jonathan Delano ◽  
...  

Intestinal epithelial cells act as innate immune sentinels, as the first cells that encounter diarrheal pathogens. They use pattern recognition molecules such as the Toll-like receptors (TLRs) to identify molecular signals found on microbes but not host cells or food components. TLRs cannot generally distinguish the molecular signals on pathogenic bacteria from those found in commensals, yet under healthy conditions epithelial immune responses are kept in check. We hypothesized that, in the setting of tissue damage or stress, intestinal epithelial cells would upregulate their responses to TLR ligands to reflect the greater need for immediate protection against pathogens. We treated Caco-2 cells with the TLR5 agonist flagellin in the presence or absence of H2O2 and measured chemokine production and intracellular signaling pathways. H2O2 increased flagellin-induced IL-8 (CXCL8) production in a dose-dependent manner. This was associated with synergistic phosphorylation of p38 MAP kinase and with prolonged I-κB degradation and NF-κB activation. The H2O2-mediated potentiation of IL-8 production required the activity of p38, tyrosine kinases, phospholipase Cγ, and intracellular calcium, but not protein kinase C or protein kinase D. H2O2 prolonged and augmented NF-κB activation by flagellin. In contrast to IL-8, CCL20 (MIP3α) production by flagellin was reduced by H2O2, and this effect was not calcium dependent. Oxidative stress biases intestinal epithelial responses to flagellin, leading to increased production of IL-8 and decreased production of CCL20. This suggests that epithelial cells are capable of sensing the extracellular environment and adjusting their antimicrobial responses accordingly.


2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Xiaoqing Wang ◽  
Weiwei Hu ◽  
Liqi Zhu ◽  
Qian Yang

Intestinal epithelial cells are the targets for transmissible gastroenteritis (TGE) virus (TGEV) infection. It is urgent to develop a novel candidate against TGEV entry. Bacillus subtilis is a probiotic with excellent anti-microorganism properties and one of its secretions, surfactin, has been regarded as a versatile weapon for most plant pathogens, especially for the enveloped virus. We demonstrate for the first time that B. subtilis OKB105 and its surfactin can effectively inhibit one animal coronavirus, TGEV, entering the intestinal porcine epithelial cell line (IPEC-J2). Then, several different experiments were performed to seek the might mechanisms. The plaque assays showed that surfactant could reduce the plaque generation of TGEV in a dose-dependent manner. Meanwhile, after incubation with TGEV for 1.5 h, B. subtilis could attach TGEV particles to their surface so that the number of virus to bind to the host cells was declined. Furthermore, our data showed that the inhibition of B. subtilis was closely related to the competition with TGEV for the viral entry receptors, including epidermal growth factor receptor (EGFR) and aminopeptidase N (APN) protein. In addition, Western blotting and apoptosis analysis indicated that B. subtilis could enhance the resistance of IPEC-J2 cells by up-regulating the expression of toll-like receptor (TLR)-6 and reducing the percentage of apoptotic cells. Taken together, our results suggest that B. subtilis OKB105 and its surfactin can antagonize TGEV entry in vitro and may serve as promising new candidates for TGEV prevention.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1736 ◽  
Author(s):  
Schumacher ◽  
Rose-John

All ligands of the epidermal growth factor receptor (EGF-R) are transmembrane proteins, which need to be proteolytically cleaved in order to be systemically active. The major protease responsible for this cleavage is the membrane metalloprotease ADAM17, which also has been implicated in cleavage of TNFα and interleukin-6 (IL-6) receptor. It has been recently shown that in the absence of ADAM17, the main protease for EGF-R ligand processing, colon cancer formation is largely abrogated. Intriguingly, colon cancer formation depends on EGF-R activity on myeloid cells rather than on intestinal epithelial cells. A major activity of EGF-R on myeloid cells is the stimulation of IL-6 synthesis. Subsequently, IL-6 together with the ADAM17 shed soluble IL-6 receptor acts on intestinal epithelial cells via IL-6 trans-signaling to induce colon cancer formation, which can be blocked by the inhibitor of IL-6 trans-signaling, sgp130Fc. Blockade of IL-6 trans-signaling therefore offers a new therapeutic window downstream of the EGF-R for the treatment of colon cancer and possibly of other EGF-R related neoplastic diseases.


Sign in / Sign up

Export Citation Format

Share Document