Carrageenan induces interleukin-8 production through distinct Bcl10 pathway in normal human colonic epithelial cells

2007 ◽  
Vol 292 (3) ◽  
pp. G829-G838 ◽  
Author(s):  
Alip Borthakur ◽  
Sumit Bhattacharyya ◽  
Pradeep K. Dudeja ◽  
Joanne K. Tobacman

Carrageenan is a high molecular weight sulfated polygalactan used to improve the texture of commercial food products. Its use increased markedly during the last half century, although carrageenan is known to induce inflammation in rheumatological models and in intestinal models of colitis. We performed studies to determine its direct effects on human intestinal cells, including normal human intestinal epithelial cells from colonic surgeries, the normal intestinal epithelial cell line NCM460, and normal rat ileal epithelial cells. Cells were treated with high molecular weight λ-carrageenan at a concentration of 1 μg/ml for 1–96 h. IL-8, IL-8 promoter activity, total and nuclear NF-κB, IκBα, phospho-IκBα, and Bcl10 were assessed by immunohistochemistry, Western blot, ELISA, and cDNA microarray. Increased Bcl10, nuclear and cytoplasmic NF-κB, IL-8 promoter activation, and IL-8 secretion were detected following carrageenan exposure. Knockdown of Bcl10 by siRNA markedly reduced the increase in IL-8 that followed carrageenan exposure in the NCM460 cells. These results show, for the first time, that exposure of human intestinal epithelial cells to carrageenan triggers a distinct inflammatory pathway via activation of Bcl10 with NF-κB activation and upregulation of IL-8 secretion. Since Bcl10 contains a caspase-recruitment domain, similar to that found in NOD2/CARD15 and associated with genetic predisposition to Crohn's disease, the study findings may represent a link between genetic and environmental etiologies of inflammatory bowel disease. Because of the high use of carrageenan as a food additive in the diet, the findings may have clinical significance.

2001 ◽  
Vol 281 (2) ◽  
pp. G323-G332 ◽  
Author(s):  
M. C. Buresi ◽  
E. Schleihauf ◽  
N. Vergnolle ◽  
A. Buret ◽  
J. L. Wallace ◽  
...  

The thrombin receptor, protease-activated receptor-1 (PAR-1), has wide tissue distribution and is involved in many physiological functions. Because thrombin is in the intestinal lumen and mucosa during inflammation, we sought to determine PAR-1 expression and function in human intestinal epithelial cells. RT-PCR showed PAR-1 mRNA expression in SCBN cells, a nontransformed duodenal epithelial cell line. Confluent SCBN monolayers mounted in Ussing chambers responded to PAR-1 activation with a Cl−-dependent increase in short-circuit current. The secretory effect was blocked by BaCl2and the Ca2+-ATPase inhibitor thapsigargin, but not by the L-type Ca2+channel blocker verapamil or DIDS, the nonselective inhibitor of Ca2+-dependent Cl−transport. Responses to thrombin and PAR-1-activating peptides exhibited auto- and crossdesensitization. Fura 2-loaded SCBN cells had increased fluorescence after PAR-1 activation, indicating increased intracellular Ca2+. RT-PCR showed that SCBN cells expressed mRNA for the cystic fibrosis transmembrane conductance regulator (CFTR) and hypotonicity-activated Cl−channel-2 but not for the Ca2+-dependent Cl−channel-1. PAR-1 activation failed to increase intracellular cAMP, suggesting that the CFTR channel is not involved in the Cl−secretory response. Our data demonstrate that PAR-1 is expressed on human intestinal epithelial cells and regulates a novel Ca2+-dependent Cl−secretory pathway. This may be of clinical significance in inflammatory intestinal diseases with elevated thrombin levels.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e74337 ◽  
Author(s):  
Taoufik Khalfaoui ◽  
Jean-François Groulx ◽  
Georges Sabra ◽  
Amel GuezGuez ◽  
Nuria Basora ◽  
...  

2007 ◽  
Vol 12 (3) ◽  
pp. 429-435 ◽  
Author(s):  
Yangde Zhang ◽  
Jiji Chen ◽  
Yanqiong Zhang ◽  
Zhiyuan Hu ◽  
Duosha Hu ◽  
...  

Tumor-targeting therapy can be an efficacious way to cure a malignant tumor in clinical trials. Phage display is a molecular diversity technology that allows the presentation of a large number of peptides or proteins on the surface of filamentous phage for various applications. In this study, we report on using phage display to generate peptide libraries that bind to colon cancer tissues. To accomplish this, we developed a screening protocol that contained 3 rounds of in vitro positive panning on colon cancer cells (SW480) and 2 rounds of subtractive screening in vitro on normal human intestinal epithelial cells with a phage display-7 peptide library. After several rounds of panning, both phage titer and recovery efficiency were significantly improved. Through a cell-based enzyme-linked immunosorbent assay, immunofluorescence, in vivo binding assay, immunocytochemical staining, and immunohistochemical staining, peptide CP15 (VHLGYAT) was demonstrated to be the most effective peptide in targeting tumor cells (SW480 and HT29 cells) and tumor tissues but not the normal human intestinal epithelial cells and control colon tissue. These studies suggest that peptide CP15 may be a promising lead candidate in the development of a useful colon tumor diagnostic and targeted drug delivery agent. ( Journal of Biomolecular Screening 2007:429-435)


2007 ◽  
Vol 293 (2) ◽  
pp. G429-G437 ◽  
Author(s):  
Sumit Bhattacharyya ◽  
Alip Borthakur ◽  
Nitika Pant ◽  
Pradeep K. Dudeja ◽  
Joanne K. Tobacman

Lipopolysaccharide (LPS) is recognized as an inducer of the inflammatory response associated with gram-negative sepsis and systemic inflammatory response syndrome. LPS induction proceeds through Toll-like receptor (TLR) in immune cells and intestinal epithelial cells (IEC). This report presents the first identification of Bcl10 (B-cell CLL/lymphoma 10) as a mediator of the LPS-induced activation of IL-8 in human IEC. Bcl10 is a caspase-recruitment domain-containing protein, associated with constitutive activation of NF-κB in MALT (mucosa-associated lymphoid tissue) lymphomas. The normal human IEC line NCM460, normal primary human colonocytes, and ex vivo human colonic tissue were exposed to 10 ng/ml of LPS for 2–6 h. Effects on Bcl10, phospho-IκBα, NF-κB, and IL-8 were determined by Western blot, ELISA, immunohistochemistry, and confocal microscopy. Effects of Bcl10 silencing by small-interfering RNA (siRNA), TLR4 blocking antibody, TLR4 silencing by siRNA, and an IL-1 receptor-associated kinase (IRAK)-1/4 inhibitor on LPS-induced activation were examined. Following Bcl10 silencing, LPS-induced increases in NF-κB, IκBα, and IL-8 were significantly reduced ( P < 0.001). Increasing concentrations of LPS were associated with higher concentrations of Bcl10 protein when quantified by ELISA, and the association between LPS exposure and increased Bcl10 was also demonstrated by Western blot, immunohistochemistry, and confocal microscopy. Exposure to TLR4 antibody, TLR4 siRNA, or an IRAK-1/4 inhibitor eliminated the LPS-induced increases in Bcl10, NF-κB, and IL-8. Identification of Bcl10 as a mediator of LPS-induced activation of NF-κB and IL-8 in normal human IEC provides new insight into mechanisms of epithelial inflammation and new opportunities for therapeutic intervention.


2000 ◽  
Vol 118 (4) ◽  
pp. A548
Author(s):  
Johannes Grossmann ◽  
Kathrin Walther ◽  
Monika Artinger ◽  
Deltlev Bruegge ◽  
Ruemmerle Petra ◽  
...  

2005 ◽  
Vol 11 (5) ◽  
pp. 464-472 ◽  
Author(s):  
Phyllissa Schmiedlin-Ren ◽  
Filippos Kesisoglou ◽  
John A Mapili ◽  
Sayed E Sabek ◽  
Jeffrey L Barnett ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Alex I. Chernyavsky ◽  
Valentin Galitovskiy ◽  
Igor B. Shchepotin ◽  
Sergei A. Grando

A search for novel and more efficient therapeutic modalities of inflammatory bowel disease (IBD) is one of the most important tasks of contemporary medicine. The anti-inflammatory action of nicotine in IBD might be therapeutic, but its toxicity due to off-target and nonreceptor effects limited its use and prompted a search for nontoxic nicotinergic drugs. We tested the hypothesis that SLURP-1 and -2—the physiological nicotinergic substances produced by the human intestinal epithelial cells (IEC) and immunocytes—can mimic the anti-inflammatory effects of nicotine. We used human CCL-241 enterocytes, CCL-248 colonocytes, CCRF-CEM T-cells, and U937 macrophages. SLURP-1 diminished the TLR9-dependent secretion of IL-8 by CCL-241, and IFNγ-induced upregulation of ICAM-1 in both IEC types. rSLURP-2 inhibited IL-1β-induced secretion of IL-6 and TLR4- and TLR9-dependent induction of CXCL10 and IL-8, respectively, in CCL-241. rSLURP-1 decreased production of TNFαby T-cells, downregulated IL-1βand IL-6 secretion by macrophages, and moderately upregulated IL-10 production by both types of immunocytes. SLURP-2 downregulated TNFαand IFNγR in T-cells and reduced IL-6 production by macrophages. Combining both SLURPs amplified their anti-inflammatory effects. Learning the pharmacology of SLURP-1 and -2 actions on enterocytes, colonocytes, T cells, and macrophages may help develop novel effective treatments of IBD.


Sign in / Sign up

Export Citation Format

Share Document