scholarly journals Measurement of strains experienced by viscerofugal nerve cell bodies during mechanosensitive firing using digital image correlation

2016 ◽  
Vol 311 (5) ◽  
pp. G869-G879 ◽  
Author(s):  
Gwen Palmer ◽  
Timothy J. Hibberd ◽  
Tiina Roose ◽  
Simon J. H. Brookes ◽  
Mark Taylor

Mechanosensory neurons detect physical events in the local environments of the tissues that they innervate. Studies of mechanosensitivity of neurons or nerve endings in the gut have related their firing to strain, wall tension, or pressure. Digital image correlation (DIC) is a technique from materials engineering that can be adapted to measure the local physical environments of afferent neurons at high resolution. Flat-sheet preparations of guinea pig distal colon were set up with arrays of tissue markers in vitro. Firing of single viscerofugal neurons was identified in extracellular colonic nerve recordings. The locations of viscerofugal nerve cell bodies were inferred by mapping firing responses to focal application of the nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide. Mechanosensory firing was recorded during load-evoked uniaxial or biaxial distensions. Distension caused movement of surface markers which was captured by video imaging. DIC tracked the markers, interpolating the mechanical state of the gut at the location of the viscerofugal nerve cell body. This technique revealed heterogeneous load-evoked strain within preparations. Local strains at viscerofugal nerve cell bodies were usually smaller than global strain measurements and correlated more closely with mechanosensitive firing. Both circumferential and longitudinal strain activated viscerofugal neurons. Simultaneous loading in circumferential and longitudinal axes caused the highest levels of viscerofugal neuron firing. Multiaxial strains, reflecting tissue shearing and changing area, linearly correlated with mechanosensory firing of viscerofugal neurons. Viscerofugal neurons were mechanically sensitive to both local circumferential and local longitudinal gut strain, and appear to lack directionality in their stretch sensitivity.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Hong He ◽  
Rong Zhou ◽  
Yuanwen Zou ◽  
Xuejin Huang ◽  
Jinchuan Li

Cell mechanical stretching in vitro is a fundamental technique commonly used in cardiovascular mechanobiology research. Accordingly, it is crucial to measure the accurate strain field of cell substrate under different strains. Digital image correlation (DIC) is a widely used measurement technique, which is able to obtain the accurate displacement and strain distribution. However, the traditional DIC algorithm used in digital image correlation engine (DICe) cannot obtain accurate result when utilized in large strain measurement. In this paper, an improved method aiming to acquire accurate strain distribution of substrate in large deformation was proposed, to evaluate the effect and accuracy, based on numerical experiments. The results showed that this method was effective and highly accurate. Then, we carried out uniaxial substrate stretching experiments and applied our method to measure strain distribution of the substrate. The proposed method could obtain accurate strain distribution of substrate film during large stretching, which would allow researchers to adequately describe the response of cells to different strains of substrate.


2017 ◽  
Vol 61 (2) ◽  
pp. 139-148 ◽  
Author(s):  
Nuno Calha ◽  
Ana Messias ◽  
Fernando Guerra ◽  
Beatriz Martinho ◽  
Maria Augusta Neto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document