Epiregulin promotes the emergence and proliferation of adult liver progenitor cells

2014 ◽  
Vol 307 (1) ◽  
pp. G50-G57 ◽  
Author(s):  
Kyoko Tomita ◽  
Hiroaki Haga ◽  
Kei Mizuno ◽  
Tomohiro Katsumi ◽  
Chikako Sato ◽  
...  

We have previously reported that epiregulin is a growth factor that seems to act on liver progenitor cells (LPCs) during liver regeneration. However, the relationship between epiregulin and LPCs has remained unclear. The aim of the present study was to clarify the role of epiregulin during liver regeneration. The serum levels of epiregulin in patients with acute liver failure were examined. A liver injury model was developed using mice fed a diet containing 0.1% 3.5-diethoxycarbonyl-1.4-dihydrocollidine (DDC) to induce LPCs. We then evaluated the expression of epiregulin and LPCs in these mice. The proliferation of epithelial cell adhesion molecule + LPCs cultured with epiregulin was examined in vitro, and finally epiregulin was overexpressed in mouse liver. In patients with acute liver failure, serum epiregulin levels were elevated significantly. In DDC mice, LPCs emerged around the portal area. Epiregulin was also detected around the portal area during the course of DDC-induced liver injury and was partially coexpressed with Thy1. Serum epiregulin levels in DDC mice were also significantly elevated. Recombinant epiregulin augmented the proliferative capacity of the LPCs in a dose-dependent manner. In mice showing overexpression of epiregulin, the expression of PCNA on hepatocytes was increased significantly. Finally, LPCs emerged around the portal area after epiregulin gene delivery. We concluded that epiregulin promotes the proliferation of LPCs and DNA synthesis by hepatocytes and is upregulated in the serum of patients with liver injury. Furthermore, induction of epiregulin leads to the appearance of LPCs. Epiregulin would be a useful biomarker of liver regeneration.

2015 ◽  
Vol 149 (7) ◽  
pp. 1896-1909.e14 ◽  
Author(s):  
Benjamin M. Stutchfield ◽  
Daniel J. Antoine ◽  
Alison C. Mackinnon ◽  
Deborah J. Gow ◽  
Calum C. Bain ◽  
...  

Gut ◽  
2017 ◽  
Vol 67 (2) ◽  
pp. 333-347 ◽  
Author(s):  
Evangelos Triantafyllou ◽  
Oltin T Pop ◽  
Lucia A Possamai ◽  
Annika Wilhelm ◽  
Evaggelia Liaskou ◽  
...  

ObjectiveAcute liver failure (ALF) is characterised by overwhelming hepatocyte death and liver inflammation with massive infiltration of myeloid cells in necrotic areas. The mechanisms underlying resolution of acute hepatic inflammation are largely unknown. Here, we aimed to investigate the impact of Mer tyrosine kinase (MerTK) during ALF and also examine how the microenvironmental mediator, secretory leucocyte protease inhibitor (SLPI), governs this response.DesignFlow cytometry, immunohistochemistry, confocal imaging and gene expression analyses determined the phenotype, functional/transcriptomic profile and tissue topography of MerTK+ monocytes/macrophages in ALF, healthy and disease controls. The temporal evolution of macrophage MerTK expression and its impact on resolution was examined in APAP-induced acute liver injury using wild-type (WT) and Mer-deficient (Mer−/−) mice. SLPI effects on hepatic myeloid cells were determined in vitro and in vivo using APAP-treated WT mice.ResultsWe demonstrate a significant expansion of resolution-like MerTK+HLA-DRhigh cells in circulatory and tissue compartments of patients with ALF. Compared with WT mice which show an increase of MerTK+MHCIIhigh macrophages during the resolution phase in ALF, APAP-treated Mer−/− mice exhibit persistent liver injury and inflammation, characterised by a decreased proportion of resident Kupffer cells and increased number of neutrophils. Both in vitro and in APAP-treated mice, SLPI reprogrammes myeloid cells towards resolution responses through induction of a MerTK+HLA-DRhigh phenotype which promotes neutrophil apoptosis and their subsequent clearance.ConclusionsWe identify a hepatoprotective, MerTK+, macrophage phenotype that evolves during the resolution phase following ALF and represents a novel immunotherapeutic target to promote resolution responses following acute liver injury.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Tingshuai Wang ◽  
Na Wang ◽  
Rongzhen Zhang ◽  
Shaodong Huang ◽  
Hua Qiu ◽  
...  

Purpose. Jie-Du-Hua-Yu (JDHY) granules are a traditional Chinese medicine with known therapeutic effects for the treatment of acute liver failure (ALF). This study explored the potential molecular mechanism(s) of JDHY granules in promoting liver regeneration and preventing ALF. Methods. Rat models of ALF were constructed through administration of D-galactosamine (D-GalN) (600 mg/kg) and lipopolysaccharides (LPS) (20 μg/kg). Rats were gavaged with JDHY granules, and serum and liver samples were collected at 12 h post-D-GalN/LPS administration. The degree of liver injury was evaluated through hepatic pathology and alanine/aspartate aminotransferase (ALT/AST) activity. miRNA chips were used to detect the miRNA expression profiles of rat models. Bioinformatics analysis was used to identify the biological processes and cell signaling pathways mediating the therapeutic effects of JDHY. Real-time PCR (RT-PCR) and western blotting were used to validate the data. Results. JDHY granules could effectively decrease the levels of ALT and AST, relieve D-GalN/LPS-induced liver injury, and improve hepatic function. JDHY granules were found to regulate the expression of 20 miRNAs and 19 mRNAs, which influenced 21 biological processes and 9 signaling pathways. Upon analysis of the therapeutic mechanism(s) governing the effects of JDHY granules on liver regeneration, enhanced DNA replication and an improved cholesterol metabolic ratio were identified. JDHY granules were also found to increase the expression of MCM3, CDK4, and TC, confirming the involvement of these pathways. Moreover, JDHY granules were found to promote hepatocyte mitosis and inhibit the progression of ALF. Conclusion. JDHY granules protect against D-GalN/LPS-induced ALF in rats by promoting liver regeneration through enhanced DNA replication and an improved cholesterol metabolic ratio.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Tariq Helal Ashour

The therapeutic efficacy of interleukin-22 (IL-22) on liver injury and hematological disturbances was studied in rat model of acute liver failure (ALF) induced by D-galactosamine/lipopolysaccharide (D-GalN/LPS). The following parameters were investigated: (1) survival rate, (2) serum levels of liver function enzymes (aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP)), total bilirubin (TBILI), and total albumen (ALB), (3) blood clotting tests (prothrombin time (PT), activated partial thromboplastin time (aPTT), and fibrinogen level (FIB)) and white blood cells (WBCs), red blood cells (RBCs), and platelet counts, (4) hepatic levels of tumor necrosis factor-α(TNF-α) and cyclooxygenase-2 (COX-2), and (5) liver histopathology. After 48 hours of D-GalN/LPS, the rats exhibited 20% mortality, significant increases in AST, ALT, ALP, TBILI, PT, and aPTT, TNF-α, and COX-2 and significant decreases in FIB, WBCs, and RBCs. By contrast, therapy with IL-22 prevented the lethal effect of D-GalN/LPS by 100% and efficiently alleviated all the biochemical and hematological abnormalities that were observed in ALF untreated group. Furthermore, IL-22 treatment decreased the hepatic contents of TNF-αand COX-2. The histopathological findings also supported the hepatoprotective effect of IL-22. Taken together, therapy with IL-22 can represent a promising therapeutic tool against liver injury and its associated hemostasis disturbances.


2021 ◽  
Author(s):  
Xiang-fen Ji ◽  
Yu-chen Fan ◽  
Fei Sun ◽  
Jing-wei Wang ◽  
kai wang

Abstract Acute liver failure (ALF) is a deadly clinical disorder with few effective treatments and unclear pathogenesis. In our previous study, we demonstrated that aberrant Wnt5a expression was involved in acute on chronic liver failure. However, the role of Wnt5a in ALF is unknown. We investigated the expression of Wnt5a and its downstream signaling of c-jun N-terminal kinase (JNK) in a mouse model of ALF established by co-injection of D-galactosamine (D-Gal) and lipopolysaccharide (LPS) in C57BL/6 mice. We also investigated the role of Box5, a Wnt5a antagonist in vivo. Moreover, the effect of Wnt5a/JNK signaling on downstream inflammatory cytokines expression, phagocytosis and migration in THP-1 macrophages was studied in vitro. Aberrant Wnt5a expression and JNK activation were detected in D-Gal/LPS-induced ALF mice. Box5 pretreatment reversed JNK activation, and eventually decreased the mortality rate of D-Gal/LPS-treated mice with reduced hepatic necrosis and apoptosis, serum ALT and AST levels, and liver inflammatory cytokines expression, although the last was not significant. We further demonstrated that recombined Wnt5a (rWnt5a) induced tumor necrosis α (TNF-α) and Interleukin-6 (IL-6) mRNA expression, and increased the phagocytosis ability of THP-1 macrophages in a JNK-dependent manner, which could be restored by Box5. In addition, rWnt5a-induced migration of THP-1 macrophages was also turned by Box5. Our findings suggested that Wnt5a/JNK signaling play important role in the development of ALF, and Box5 could have particular hepatoprotecive effects in ALF.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuji Suzuki ◽  
Keisuke Kakisaka ◽  
Takuro Sato ◽  
Ryouichi Mikami ◽  
Hiroaki Abe ◽  
...  

AbstractPatients with severe acute liver injury (SLI) usually recover spontaneously. However, some SLI patients progress to acute liver failure with varying degrees of hepatic encephalopathy. Acute liver failure is associated with high mortality and can be substantially reduced by liver transplantation. Therefore, distinguishing SLI patients who might progress to acute liver failure and are at a risk of death is important when evaluating patients needing liver transplantation. The present study aimed to determine whether technetium-99m-diethylenetriaminepentaacetic acid galactosyl human serum albumin (Tc-99m GSA) scintigraphy can predict the prognosis of patients with SLI. This prospective observational study included 69 SLI patients. The accuracy of Tc-99m GSA for predicting death or liver transplantation for 6 months was assessed. Between the two groups of patients stratified based on the cut-off values from the receiver operating characteristic curves, 6-month transplant-free survival was compared. Sixteen (23.2%) patients died or underwent liver transplantation from admission (poor outcome). The hepatic accumulation index was calculated by dividing the radioactivity of the liver region of interest by that of the liver-plus-heart region of interest at 15 min (i.e., LHL15). The LHL15 in the 16 patients (0.686) was significantly lower than that in survivors (0.836; P < 0.0001). The optimal LHL15 cut-off for distinguishing poor outcome and survival was 0.737 with a sensitivity of 81.3%, specificity of 88.7%, and area under the curve of 0.907 (95% CI, 0.832–0.981). When patients were divided into two groups based on the LHL15 cut-off value, the 6-month transplant-free survival was significantly lower in patients with an LHL15 level ≤ 0.737. Tc-99m GSA scintigraphy may help predict the prognosis of patients with SLI.


2021 ◽  
Vol 35 ◽  
pp. 205873842110314
Author(s):  
Fei Zeng ◽  
Jierong Luo ◽  
Hong Han ◽  
Wenjie Xie ◽  
Lingzhi Wang ◽  
...  

Hyperglycemia-induced oxidative stress plays important roles in the development of non-alcoholic fatty liver disease (NAFLD), which is a common complication in diabetic patients. The Nrf2-Keap1 pathway is important for cell antioxidant protection, while its role in exogenous antioxidant mediated protection against NAFLD is unclear. We thus, postulated that antioxidant treatment with allopurinol (ALP) may attenuate diabetic liver injury and explored the underlying mechanisms. Control (C) and streptozotocin (STZ)-induced diabetes rats (D) were untreated or treated with ALP for 4 weeks starting at 1 week after diabetes induction. Serum levels of alanine aminotransferase (ALT) and aspartate transaminase (AST), production of lipid peroxidation product malondialdehyde (MDA), and serum superoxide dismutase (SOD) were detected. Liver protein expressions of cleaved-caspase 3, IL-1β, nuclear factor-erythroid-2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), P62, Kelch-like ECH-associated protein 1 (Keap1), and LC3 were analyzed. In vitro, cultured rat normal hepatocytes BRL-3A were grouped to normal glucose (5.5 mM, NG) or high glucose (25 mM, HG) and treated with or without allopurinol (100 µM) for 48 h. Rats in the D group demonstrated liver injury evidenced as increased serum levels of ALT and AST. Diabetes increased apoptotic cell death, enhanced liver protein expressions of cleaved-caspase 3 and IL-1β with concomitantly increased production of MDA while serum SOD content was significantly reduced (all P < 0.05 vs C). In the meantime, protein levels of Nrf2, HO-1, and P62 were reduced while Keap1 and LC3 were increased in the untreated D group as compared to control ( P < 0.05 vs C). And all the above alterations were significantly attenuated by ALP. Similar to our findings obtained from in vivo study, we got the same results in in vitro experiments. It is concluded that ALP activates the Nrf2/p62 pathway to ameliorate oxidative stress and liver injury in diabetic rats.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Dezhong Wang ◽  
Yuan Yin ◽  
Shuyi Wang ◽  
Tianyang Zhao ◽  
Fanghua Gong ◽  
...  

AbstractAs a classically known mitogen, fibroblast growth factor 1 (FGF1) has been found to exert other pleiotropic functions such as metabolic regulation and myocardial protection. Here, we show that serum levels of FGF1 were decreased and positively correlated with fraction shortening in diabetic cardiomyopathy (DCM) patients, indicating that FGF1 is a potential therapeutic target for DCM. We found that treatment with a FGF1 variant (FGF1∆HBS) with reduced proliferative potency prevented diabetes-induced cardiac injury and remodeling and restored cardiac function. RNA-Seq results obtained from the cardiac tissues of db/db mice showed significant increase in the expression levels of anti-oxidative genes and decrease of Nur77 by FGF1∆HBS treatment. Both in vivo and in vitro studies indicate that FGF1∆HBS exerted these beneficial effects by markedly reducing mitochondrial fragmentation, reactive oxygen species (ROS) generation and cytochrome c leakage and enhancing mitochondrial respiration rate and β-oxidation in a 5’ AMP-activated protein kinase (AMPK)/Nur77-dependent manner, all of which were not observed in the AMPK null mice. The favorable metabolic activity and reduced proliferative properties of FGF1∆HBS testify to its promising potential for use in the treatment of DCM and other metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document