Postprandial gut hormone responses and glucose metabolism in cholecystectomized patients

2013 ◽  
Vol 304 (4) ◽  
pp. G413-G419 ◽  
Author(s):  
David P. Sonne ◽  
Kristine J. Hare ◽  
Pernille Martens ◽  
Jens F. Rehfeld ◽  
Jens J. Holst ◽  
...  

Preclinical studies suggest that gallbladder emptying, via bile acid-induced activation of the G protein-coupled receptor TGR5 in intestinal L cells, may play a significant role in the secretion of the incretin hormone glucagon-like peptide-1 (GLP-1) and, hence, postprandial glucose homeostasis. We examined the secretion of gut hormones in cholecystectomized subjects to test the hypothesis that gallbladder emptying potentiates postprandial release of GLP-1. Ten cholecystectomized subjects and 10 healthy, age-, gender-, and body mass index-matched control subjects received a standardized fat-rich liquid meal (2,200 kJ). Basal and postprandial plasma concentrations of glucose, insulin, C-peptide, glucagon, GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-2 (GLP-2), cholecystokinin (CCK), and gastrin were measured. Furthermore, gastric emptying and duodenal and serum bile acids were measured. We found similar basal glucose concentrations in the two groups, whereas cholecystectomized subjects had elevated postprandial glucose excursions. Cholecystectomized subjects had reduced postprandial concentrations of duodenal bile acids, but preserved postprandial plasma GLP-1 responses, compared with control subjects. Also, cholecystectomized patients exhibited augmented fasting glucagon. Basal plasma CCK concentrations were lower and peak concentrations were higher in cholecystectomized patients. The concentrations of GIP, GLP-2, and gastrin were similar in the two groups. In conclusion, cholecystectomized subjects had preserved postprandial GLP-1 responses in spite of decreased duodenal bile delivery, suggesting that gallbladder emptying is not a prerequisite for GLP-1 release. Cholecystectomized patients demonstrated a slight deterioration of postprandial glycemic control, probably because of metabolic changes unrelated to incretin secretion.

Author(s):  
Emma Rose McGlone ◽  
Khalefah Malallah ◽  
Joyceline Cuenco ◽  
Nicolai J. Wewer Albrechtsen ◽  
Jens J. Holst ◽  
...  

AIMS Bile acids (BA) regulate post-prandial metabolism directly and indirectly by affecting the secretion of gut hormones like glucagon-like peptide-1 (GLP-1). The post-prandial effects of BA on the secretion of other metabolically active hormones are not well understood. The objective of this study was to investigate the effect of oral ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) on post-prandial secretion of GLP-1, oxyntomodulin (OXM), peptide YY (PYY), glucose-dependent insulinotropic peptide (GIP), glucagon and ghrelin. METHODS Twelve healthy volunteers underwent a mixed meal test 60 minutes after ingestion of UDCA (12-16 mg/kg), CDCA (13-16 mg/kg) or no BA in a randomised cross-over study. Glucose, insulin, GLP-1, OXM, PYY, GIP, glucagon, ghrelin and fibroblast growth factor 19 were measured prior to BA administration at -60, 0 (just prior to mixed meal) and 15, 30, 60, 120, 180 and 240 minutes after the meal. RESULTS UDCA and CDCA provoked differential gut hormone responses: UDCA did not have any significant effects, but CDCA provoked significant increases in GLP-1 and OXM and a profound reduction in GIP. CDCA increased fasting GLP-1 and OXM secretion in parallel with an increase in insulin. On the other hand, CDCA reduced post-prandial secretion of GIP, with an associated reduction in post-prandial insulin secretion. CONCLUSIONS Exogenous CDCA can exert multiple salutary effects on the secretion of gut hormones; if these effects are confirmedin obesity and type 2 diabetes, CDCA may be a potential therapy for these conditions.


1991 ◽  
Vol 129 (1) ◽  
pp. 55-58 ◽  
Author(s):  
A. Faulkner ◽  
H. T. Pollock

ABSTRACT The effects of i.v. glucagon-like peptide-1-(7–36)amide (GLP-1; 10 μg) on starved sheep given an i.v. glucose load (5 g) were studied. Plasma insulin concentrations rose significantly more after glucose administration in fed than in starved sheep. Giving GLP-1 to starved sheep increased the insulin response to the glucose load. The rise in plasma insulin concentrations in starved sheep given GLP-1 was similar to that observed in fed sheep. Plasma glucose concentrations returned to normal values more quickly in the starved sheep given GLP-1 than in starved sheep not given gut hormone. Plasma concentrations of free fatty acid, urea and α-amino nitrogen decreased more quickly following glucose administration in starved sheep given GLP-1 than in those not given GLP-1. The data suggest a role for GLP-1 in regulating plasma insulin concentrations and hence metabolism in ruminant animals. The possible role of gut hormones in ruminants is discussed. Journal of Endocrinology (1991) 129, 55–58


2010 ◽  
Vol 299 (1) ◽  
pp. E10-E13 ◽  
Author(s):  
Filip K. Knop

During the last decades it has become clear that bile acids not only act as simple fat solubilizers, but additionally represent complex hormonal metabolic integrators. Bile acids activate both nuclear receptors (controlling transcription of genes involved in for example bile acid, cholesterol, and glucose metabolism) and the cell surface G protein-coupled receptor TGR5 (modulating energy expenditure in brown fat and muscle cells). It has been shown that TGR5 is expressed in enteroendocrine L cells, which secrete the potent glucose-lowering incretin hormone glucagon-like peptide-1 (GLP-1). Recently it was shown that bile acid-induced activation of TGR5 results in intestinal secretion of GLP-1 and that enhanced TGR5 signaling improves postprandial glucose tolerance in diet-induced obese mice. This Perspectives article presents these novel findings in the context of prior studies on nutrient-induced GLP-1 secretion and outlines the potential implications of bile acid-induced GLP-1 secretion in physiological, pathophysiological, and pharmacological perspectives.


2006 ◽  
Vol 290 (6) ◽  
pp. E1118-E1123 ◽  
Author(s):  
Juris J. Meier ◽  
Arnica Gethmann ◽  
Michael A. Nauck ◽  
Oliver Götze ◽  
Frank Schmitz ◽  
...  

Glucagon-like peptide 1 (GLP-1) lowers glycemia by modulating gastric emptying and endocrine pancreatic secretion. Rapidly after its secretion, GLP-1-(7–36) amide is degraded to the metabolite GLP-1-(9–36) amide. The effects of GLP-1-(9–36) amide in humans are less well characterized. Fourteen healthy volunteers were studied with intravenous infusion of GLP-1-(7–36) amide, GLP-1-(9–36) amide, or placebo over 390 min. After 30 min, a solid test meal was served, and gastric emptying was assessed. Blood was drawn for GLP-1 (total and intact), glucose, insulin, C-peptide, and glucagon measurements. Administration of GLP-1-(7–36) amide and GLP-1-(9–36) amide significantly raised total GLP-1 plasma levels. Plasma concentrations of intact GLP-1 increased to 21 ± 5 pmol/l during the infusion of GLP-1-(7–36) amide but remained unchanged during GLP-1-(9–36) amide infusion [5 ± 3 pmol/l; P < 0.001 vs. GLP-1-(7–36) amide administration]. GLP-1-(7–36) amide reduced fasting and postprandial glucose concentrations ( P < 0.001) and delayed gastric emptying ( P < 0.001). The GLP-1 metabolite had no influence on insulin or C-peptide concentrations. Glucagon levels were lowered by GLP-1-(7–36) amide but not by GLP-1-(9–36) amide. However, the postprandial rise in glycemia was reduced significantly (by ∼6 mg/dl) by GLP-1-(9–36) amide ( P < 0.05). In contrast, gastric emptying was completely unaffected by the GLP-1 metabolite. The GLP-1 metabolite lowers postprandial glycemia independently of changes in insulin and glucagon secretion or in the rate of gastric emptying. Most likely, this is because of direct effects on glucose disposal. However, the glucose-lowering potential of GLP-1-(9–36) amide appears to be small compared with that of intact GLP-1-(7–36) amide.


Physiology ◽  
2015 ◽  
Vol 30 (1) ◽  
pp. 50-62 ◽  
Author(s):  
Sean Manning ◽  
Andrea Pucci ◽  
Rachel L. Batterham

There has been increasing interest in the role that gut hormones may play in contributing to the physiological changes produced by certain bariatric procedures, such as Roux-en-Y gastric bypass and sleeve gastrectomy. Here, we review the evidence implicating one such gut hormone, glucagon-like peptide-1, as a mediator of the metabolic benefits of these two procedures.


2014 ◽  
Vol 171 (4) ◽  
pp. 407-419 ◽  
Author(s):  
David P Sonne ◽  
Jens F Rehfeld ◽  
Jens J Holst ◽  
Tina Vilsbøll ◽  
Filip K Knop

ObjectiveRecent preclinical work has suggested that postprandial flow of bile acids into the small intestine potentiates nutrient-induced glucagon-like peptide 1 (GLP1) secretion via bile acid-induced activation of the G protein-coupled receptor TGR5 in intestinal L cells. The notion of bile-induced GLP1 secretion combined with the findings of reduced postprandial gallbladder emptying in patients with type 2 diabetes (T2DM) led us to speculate whether reduced postprandial GLP1 responses in some patients with T2DM arise as a consequence of diabetic gallbladder dysmotility.Design and methodsIn a randomised design, 15 patients with long-standing T2DM and 15 healthy age-, gender- and BMI-matched control subjects were studied during 75-g oral glucose tolerance test (OGTT) and three isocaloric (500 kcal) and isovolaemic (350 ml) liquid meals: i) 2.5 g fat, 107 g carbohydrate and 13 g protein; ii) 10 g fat, 93 g carbohydrate and 11 g protein; and iii) 40 g fat, 32 g carbohydrate and 3 g protein. Basal and postprandial plasma concentrations of glucose, insulin, C-peptide, glucagon, GLP1, glucose-dependent insulinotropic polypeptide (GIP), cholecystokinin and gastrin were measured. Furthermore, gallbladder emptying and gastric emptying were examined.ResultsGallbladder emptying increased with increasing meal fat content, but no intergroup differences were demonstrated. GIP and GLP1 responses were comparable among the groups with GIP levels being higher following high-fat meals, whereas GLP1 secretion was similar after both OGTT and meals.ConclusionsIn conclusion, patients with T2DM exhibited normal gallbladder emptying to meals with a wide range of fat content. Incretin responses were similar to that in controls, and an association with postprandial gallbladder contraction could not be demonstrated.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aleksandra Mieczkowska ◽  
Beatrice Bouvard ◽  
Erick Legrand ◽  
Guillaume Mabilleau

Bone tissue is organized at the molecular level to resist fracture with the minimum of bone material. This implies that several modifications of the extracellular matrix, including enzymatic collagen crosslinking, take place. We previously highlighted the role of several gut hormones in enhancing collagen maturity and bone strength. The present study investigated the effect of proglucagon-derived peptides on osteoblast-mediated collagen post-processing. Briefly, MC3T3-E1 murine osteoblasts were cultured in the presence of glucagon (GCG), [D-Ala²]-glucagon-like peptide-1 ([D-Ala²]-GLP-1), and [Gly²]-glucagon-like peptide-2 ([Gly²]-GLP-2). Gut hormone receptor expression at the mRNA and protein levels were investigated by qPCR and Western blot. Extent of collagen postprocessing was examined by Fourier transform infrared microspectroscopy. GCG and GLP-1 receptors were not evidenced in osteoblast cells at the mRNA and protein levels. However, it is not clear whether the known GLP-2 receptor is expressed. Nevertheless, administration of [Gly²]-GLP-2, but not GCG or [D-Ala²]-GLP-1, led to a dose-dependent increase in collagen maturity and an acceleration of collagen post-processing. This mechanism was dependent on adenylyl cyclase activation. In conclusion, the present study highlighted a direct effect of [Gly²]-GLP-2 to enhance collagen post-processing and crosslinking maturation in murine osteoblast cultures. Whether this effect is translatable to human osteoblasts remains to be elucidated.


2019 ◽  
Vol 316 (5) ◽  
pp. G574-G584 ◽  
Author(s):  
Charlotte Bayer Christiansen ◽  
Samuel Addison Jack Trammell ◽  
Nicolai Jacob Wewer Albrechtsen ◽  
Kristina Schoonjans ◽  
Reidar Albrechtsen ◽  
...  

A large number of glucagon-like-peptide-1 (GLP-1)- and peptide-YY (PYY)-producing L cells are located in the colon, but little is known about their contribution to whole body metabolism. Since bile acids (BAs) increase GLP-1 and PYY release, and since BAs spill over from the ileum to the colon, we decided to investigate the ability of BAs to stimulate colonic GLP-1 and PYY secretion. Using isolated perfused rat/mouse colon as well as stimulation of the rat colon in vivo, we demonstrate that BAs significantly enhance secretion of GLP-1 and PYY from the colon with average increases of 3.5- and 2.9-fold, respectively. Furthermore, we find that responses depend on BA absorption followed by basolateral activation of the BA-receptor Takeda-G protein-coupled-receptor 5. Surprisingly, the apical sodium-dependent BA transporter, which serves to absorb conjugated BAs, was not required for colonic conjugated BA absorption or conjugated BA-induced peptide secretion. In conclusion, we demonstrate that BAs represent a major physiological stimulus for colonic L-cell secretion.NEW & NOTEWORTHY By the use of isolated perfused rodent colon preparations we show that bile acids are potent and direct promoters of colonic glucagon-like-peptide 1 and peptide-YY secretion. The study provides convincing evidence that basolateral Takeda-G protein-coupled-receptor 5 activation is mediating the effects of bile acids in the colon and thus add to the existing literature described for L cells in the ileum.


Endocrinology ◽  
2016 ◽  
Vol 157 (1) ◽  
pp. 176-194 ◽  
Author(s):  
Kaare V. Grunddal ◽  
Cecilia F. Ratner ◽  
Berit Svendsen ◽  
Felix Sommer ◽  
Maja S. Engelstoft ◽  
...  

Abstract The 2 gut hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are well known to be coexpressed, costored, and released together to coact in the control of key metabolic target organs. However, recently, it became clear that several other gut hormones can be coexpressed in the intestinal-specific lineage of enteroendocrine cells. Here, we focus on the anatomical and functional consequences of the coexpression of neurotensin with GLP-1 and PYY in the distal small intestine. Fluorescence-activated cell sorting analysis, laser capture, and triple staining demonstrated that GLP-1 cells in the crypts become increasingly multihormonal, ie, coexpressing PYY and neurotensin as they move up the villus. Proglucagon promoter and pertussis toxin receptor-driven cell ablation and reappearance studies indicated that although all the cells die, the GLP-1 cells reappear more quickly than PYY- and neurotensin-positive cells. High-resolution confocal fluorescence microscopy demonstrated that neurotensin is stored in secretory granules distinct from GLP-1 and PYY storing granules. Nevertheless, the 3 peptides were cosecreted from both perfused small intestines and colonic crypt cultures in response to a series of metabolite, neuropeptide, and hormonal stimuli. Importantly, neurotensin acts synergistically, ie, more than additively together with GLP-1 and PYY to decrease palatable food intake and inhibit gastric emptying, but affects glucose homeostasis in a more complex manner. Thus, neurotensin is a major gut hormone deeply integrated with GLP-1 and PYY, which should be taken into account when exploiting the enteroendocrine regulation of metabolism pharmacologically.


1998 ◽  
Vol 95 (6) ◽  
pp. 719-724 ◽  
Author(s):  
C. Mark B. EDWARDS ◽  
Jeannie F. TODD ◽  
Mohammad A. GHATEI ◽  
Stephen R. BLOOM

1. Glucagon-like peptide-1 (7-36) amide (GLP-1) is a gut hormone released postprandially that stimulates insulin secretion, suppresses glucagon secretion and delays gastric emptying. The insulinotropic action of GLP-1 is more potent under hyperglycaemic conditions. Several published studies have indicated the therapeutic potential of subcutaneous GLP-1 in non-insulin-dependent (Type 2) diabetes mellitus. 2. We investigated whether subcutaneous GLP-1, at a dose shown to improve glycaemic control in early Type 2 diabetes, is insulinotropic at normal fasting glucose concentrations. A double-blind, randomized, crossover study of 10 healthy subjects injected with GLP-1 or saline subcutaneously after a 16 h fast was performed. The effect on cardiovascular parameters was also examined. 3. GLP-1 caused a near 5-fold rise in plasma insulin concentration. After treatment with GLP-1, circulating plasma glucose concentrations fell below the normal range in all subjects. One subject had symptoms of hypoglycaemia after GLP-1. A rise in pulse rate was found which correlated with the fall in plasma glucose concentration. An increase in blood pressure occurred with GLP-1 injection which was seen at the same time as the rise in plasma GLP-1 concentrations. 4. This study indicates that subcutaneous GLP-1 can override the normal homoeostatic mechanism maintaining fasting plasma glucose in man, and is also associated with an increase in blood pressure.


Sign in / Sign up

Export Citation Format

Share Document