Pancreatic enzyme secretion: nonspecific stimulation by duodenal mucosal extracts

1981 ◽  
Vol 240 (2) ◽  
pp. G109-G113
Author(s):  
A. La Bella ◽  
R. G. Lahaie ◽  
H. Sarles ◽  
J. C. Dagorn

Felber et al. (Lancet 2: 185-188, 1974) reported that duodenal extracts obtained from rats fed a given meal induced the specific secretion of related pancreatic enzymes. Such an observation challenges the generally accepted theory of parallel secretion of pancreatic enzymes. Although these experiments were faithfully reproduced, no induction of specific enzyme secretion could be obtained. Moreover, comparison of the secretagogue potency of different preparations of duodenal extract, both in vivo (anesthetized rat) and in vitro (pancreatic lobules), demonstrated that in the original extraction procedure most of the secretagogue activity was lost. Finally, even the fully active extract failed to induce specific enzyme secretion. It is therefore unlikely that duodenal extracts from rats fed a specific meal can induce selective secretion of the related enzyme.

1977 ◽  
Vol 55 (3) ◽  
pp. 639-643 ◽  
Author(s):  
J. Morisset ◽  
A. R. Beaudoin

Pancreatic enzyme secretion induced by urecholine or cholecystokinin–pancreozymin (CCK–PZ) is inhibited by tetracaine. If the pancreatic tissue is preincubated with tetracaine then washed out, the subsequent response to CCK–PZ is not affected while that to urecholine is impaired. In contrast with atropine, tetracaine loses its inhibitory potency once secretion has been initiated by urecholine before the addition of the local anaesthetic. Calcium efflux studies have shown that addition of tetracaine in vitro is associated with release of calcium in the incubation medium. This effect on calcium efflux might explain partly the inhibitory action of the drug.


1974 ◽  
Vol 52 (2) ◽  
pp. 198-205 ◽  
Author(s):  
R. Mongeau ◽  
Y. Couture ◽  
J. Dunnigan ◽  
J. Morisset

The secretion of the various pancreatic enzymes can be increased by hormonal and cholinergic stimulation. However, it is not yet clear among the different investigators if their synthesis remains constant or can be modified according to different metabolic conditions. The secretion and synthesis of the pancreatic proteins were then studied in parallel to evaluate if secretion triggers synthesis or both phenomenons are controlled by separate mechanisms.The approach for these studies consists mainly in a combination of in vivo and in vitro experiments. The stimulants were injected in vivo and the pancreatic secretions were collected for different periods of time. The animals were then sacrificed and protein synthesis was measured in vitro along with the amylase secreted into the incubation medium. The results show that protein synthesis is decreased during the first 15 min after a single injection or infusion of both cholecystokinin–pancreozymin (CCK–PZ) and secretin. This reduction was associated with an increase in amylase secreted into the incubation medium. However, at 30 min after the hormonal stimulation, protein synthesis is increased while secretion into the incubation medium had returned to control levels. This increase in protein synthesis lasts for at least 1 h. These results strongly suggest that pancreatic enzyme secretion and synthesis are dissociated in the early minutes following hormonal stimulation.


1992 ◽  
Vol 263 (1) ◽  
pp. G102-G107 ◽  
Author(s):  
H. C. Soudah ◽  
Y. Lu ◽  
W. L. Hasler ◽  
C. Owyang

The mechanism by which physiological concentrations of cholecystokinin (CCK) evoke pancreatic exocrine secretion in humans was investigated. CCK octapeptide (CCK-8) dose dependently increased trypsin and lipase output in healthy humans. Atropine inhibited CCK-8 (10 ng.kg-1.h-1)-stimulated trypsin output by 84.0 +/- 7.7% and lipase output by 78.6 +/- 9.2%. The inhibition with atropine was much less with a CCK-8 dose of 40 ng.kg-1.h-1 (41.8 +/- 6.6% for trypsin and 46.3 +/- 7.3% for lipase). CCK-8 at 10 ng.kg-1.h-1 produced plasma CCK levels similar to postprandial levels (6.0 +/- 1.3 vs. 6.9 +/- 0.8 pM), whereas the 40-ng.kg-1.h-1 dose produced supraphysiological levels (18.4 +/- 3.1 pM). To evaluate if CCK might act via stimulation of cholinergic nerves, in vitro studies were performed using rat pancreas. CCK-8 (10 nM-10 microM) stimulated [3H]acetylcholine release from pancreatic lobules that was blocked by tetrodotoxin, a calcium-free medium, and the CCK antagonist L364,718. In conclusion, CCK-stimulated pancreatic enzyme secretion is dependent on cholinergic neural and noncholinergic pathways. In humans, CCK infusions, which produce plasma CCK levels similar to those seen postprandially, stimulate the pancreas predominantly via a pathway dependent on cholinergic innervation. Correlative in vitro experiments suggest that CCK may act by stimulation of neural acetylcholine release. In contrast, supraphysiological CCK infusions act in part via noncholinergic pathways.


1974 ◽  
Vol 52 (2) ◽  
pp. 174-182 ◽  
Author(s):  
A. R. Beaudoin ◽  
C. Marois ◽  
J. Dunnigan ◽  
J. Morisset

Pancreatic amylase secretion was studied using an in vitro system. Secretion was increased by urecholine and cholecystokinin–pancreozymin (CCK–PZ). Addition of tetracaine and dibucaine to the medium abolished secretion stimulated by urecholine and decreased by 75% that stimulated by CCK–PZ. In contrast, an increase in enzyme secretion was observed after dibutyryl cyclic AMP; this was potentiated by tetracaine added to the medium. Oxygen uptake by pieces of pancreatic tissue was not affected by tetracaine. Adenylate cyclase activity, increased in vitro when CCK–PZ was added to a pancreas homogenate, was inhibited by 15% by tetracaine at 2 mM and by 67.5% at the 10 mM concentration.From data known on biochemical reactions associated with the process of secretion and the results described in the present paper, we propose a model for the activation of the pancreatic adenylate cyclase complex. Associated to the depolarization of the acinar cell plasma membrane by urecholine and CCK–PZ and an inward movement of sodium and calcium, there is an immediate rise in adenylate cyclase activity within 10 s which is timed with the initiation of amylase secretion.


1985 ◽  
Vol 249 (4) ◽  
pp. G489-G495 ◽  
Author(s):  
D. S. Louie ◽  
J. A. Williams ◽  
C. Owyang

The biological activity of bovine pancreatic polypeptide (BPP) on rat exocrine pancreatic secretion was compared in vivo and in vitro. In anesthetized rats prepared with a bile-pancreatic duct cannula, BPP inhibited cholecystokinin (CCK)-stimulated (10 IDU . kg-1 X h-1) protein secretion in a dose-related manner (P less than 0.001). CCK, from 5-20 IDU . kg-1 X h-1, did not alter the degree of inhibition by BPP at 40 micrograms . kg-1 X h-1, suggesting a nonsurmountable inhibition. Analogues of BPP, including rat pancreatic polypeptide, neuropeptide Y, peptide YY, and the C-terminal hexapeptide of PP, also inhibited CCK-stimulated protein secretion. To determine whether BPP acts directly on acinar cells to suppress enzyme secretion, in vitro studies were performed. BPP and its analogues did not suppress octapeptide of CCK (CCK-8)-stimulated amylase release from either isolated rat pancreatic acini or preparations of pancreatic lobules. Specific binding of 125I-BPP to pancreatic acini was also not observed. From our data we conclude that BPP acts to inhibit pancreatic enzyme secretion in the rat in a noncompetitive manner. Absence of an effect by BPP or its analogues in vitro coupled with an absence of 125I-BPP binding to acini suggest that the inhibitory action of PP on exocrine pancreatic function is mediated by indirect mechanisms.


1990 ◽  
Vol 258 (2) ◽  
pp. G179-G184 ◽  
Author(s):  
M. F. O'Rourke ◽  
R. D. Reidelberger ◽  
T. E. Solomon

The specific cholecystokinin (CCK)-receptor antagonist L 364718 was used to examine the role of CCK in meal-induced pancreatic secretion. Unanesthetized rats with gastric, jugular vein, bilepancreatic, and duodenal cannulas were used; bile-pancreatic juice was recirculated. Basal amylase secretion (30% of maximal) was not inhibited by L 364718 doses of 0.5 or 2 mg/kg intravenously. L 364718 (0.02 to 2 mg/kg) caused dose-related inhibition of the maximal amylase response to CCK-8 (200 pmol.kg-1.h-1), with greater than 80% inhibition at doses greater than or equal to 0.5 mg/kg. L 364718 (0.5 mg/kg) shifted the dose-response curve to CCK-8 (25-3,200 pmol.kg-1.h-1) to the right (ED50 increased 10-fold) but did not alter maximal amylase output consistent with competitive inhibition of CCK in vivo. Ingestion of liquid food significantly increased amylase output threefold above basal. L 364718 (0.5 mg/kg) completely blocked this response. These results suggest that although CCK does not regulate basal pancreatic enzyme secretion, it is the primary mediator of pancreatic enzyme secretion in response to a liquid meal.


2020 ◽  
Vol 1 (30) ◽  
pp. 30-36
Author(s):  
E. A. Krylova ◽  
D. V. Aleinik

The article presents the results of a study of the effectiveness of the use of an inhibitor of pancreatic enzyme secretion of octreotide (Octrade) for the prevention of pancreatitis after endoscopic retrograde cholangiopancreatography (ERCP). It was shown that the administration of Octrade at a dose of 0.3 mg in 500 ml of 0.9 % NaCl by continuous intravenous infusion for 7 hours and then 0.1 mg of Octrade subcutaneously at 6 and 12 hours after the end of intravenous infusion significantly reduced the frequency of pancreatitis (4.0 % and 22.2 %; p < 0.05) and hyperamylasemia (8.0 % and 25.9 %; p < 0.05) after ERCP. It is concluded that Octrade is effective in preventing the development of pancreatitis and hyperamilasemia after ERCP.


Sign in / Sign up

Export Citation Format

Share Document