Canalicular bile salt-independent bile formation: concepts and clues from electrolyte transport in rat liver

1983 ◽  
Vol 244 (3) ◽  
pp. G233-G246 ◽  
Author(s):  
J. Graf

Studies on canalicular electrolyte transport are reviewed with reference to the concept that hepatocellular inorganic ion secretion may provide an osmotic drive for canalicular water flow. Cellular transport of electrolytes and of some nonelectrolytes appears directly or indirectly (cotransport or potential-sensitive transport) related to the activity of Na+-K+-ATPase of the sinusoidal cell membrane, but the role of the enzyme in regulating bile flow remains undetermined. Bile secretion of the isolated rat liver continues in the absence of either Na+, K+, Cl-, or HCO-3 when these ions are replaced in the perfusion medium by other permanent ions. Transepithelial salt concentration gradients, established experimentally, cause transient changes of bile flow and dissipate very quickly. Isotopic ion equilibration between sinusoids and bile proceeds faster than between sinusoids and liver cells. Both observations indicate extensive electrolyte diffusion through a paracellular shunt pathway. This pathway appears preferentially permeable to cations, and it restricts permeation of molecules of the size of sucrose (no apparent diffusion or effects of solvent drag) or bile acids (no backleak). In promoting canalicular osmotic water flow, transepithelial concentration gradients of NaCl are less effective than those of sucrose, revealing a reflection coefficient of NaCl of 0.3. By perfusion with hypertonic medium containing sucrose, bile flow is reduced. Bile production against this opposing osmotic gradient is accomplished by an increase in biliary organic anion concentration. Inorganic ion concentrations essentially conform to a Gibbs-Donnan distribution across the canalicular epithelium, established by the presence of impermeant anions in bile. Hence, the luminal electrical potential is expected to be negative with respect to the sinusoids. It is concluded that biliary secretion of endogenous organic anions is the major osmotic driving force for canalicular bile salt-independent bile flow and that transport of inorganic ions into bile results mainly from diffusion and solvent drag.

1992 ◽  
Vol 283 (2) ◽  
pp. 575-581 ◽  
Author(s):  
Y Hamada ◽  
A Karjalainen ◽  
B A Setchell ◽  
J E Millard ◽  
F L Bygrave

The effects were investigated of the choleretic bile salt glycoursodeoxycholate (G-UDCA) and of the cholestatic bile salt taurochenodeoxycholate (T-CDCA) on changes in perfusate Ca2+, glucose and oxygen and in bile calcium and bile flow induced by the administration of (a) vasopressin, (b) glucagon and (c) glucagon plus vasopressin together to the perfused rat liver [Hamada, Karjalainen, Setchell, Millard & Bygrave (1992) Biochem. J. 281, 387-392]. G-UDCA itself increased the secretion of calcium in the bile several-fold, but its principal effect was to augment each of the above-mentioned metabolic events except glucose and oxygen output; particularly noteworthy was its ability to augment the ‘transients’ in bile calcium and bile flow seen immediately after the administration of vasopressin with or without glucagon. T-CDCA, by contrast, produced opposite effects and attenuated all of the parameters measured, and in particular the transients in bile calcium and bile flow. The data provide evidence of a strong correlation between calcium fluxes occurring on both the sinusoidal and the bile-canalicular membranes and that all are modifiable by glucagon, Ca(2+)-mobilizing hormones and bile salts.


1986 ◽  
Vol 64 (10) ◽  
pp. 1316-1320 ◽  
Author(s):  
S. M. Strasberg ◽  
R. G. Ilson ◽  
C. E. Bear

Bile salt dependent flow and electrolyte secretion in response to two bile salts were studied in awake rabbits. It was found that sodium glycodeoxycholate had a much greater choleretic and cholioneretic efficiency than sodium taurocholate. The effect of the bile salts on flow and electrolyte secretion was not linear across the range of bile salt secretion rates studied. When amiloride was administered significant decreases in choleretic and cholioneretic efficiencies occurred, but furosemide had no effect. It is concluded that bile salts stimulate electrolyte transport via amiloride inhibitable cellular processes, and that this electrolyte transport is in part responsible for bile salt dependent bile flow.


2020 ◽  
Vol 319 (5) ◽  
pp. G609-G618
Author(s):  
Norman B. Javitt

Advances in molecular biology identifying the many carrier-mediated organic anion transporters and advances in microscopy that have provided a more detailed anatomy of the canalicular conduit make updating the concept of osmotically determined canalicular flow possible. For the most part water flow is not transmembrane but via specific pore proteins in both the hepatocyte and the tight junction. These pores independently regulate the rate at which water flows in response to an osmotic gradient and therefore are determinants of canalicular bile acid concentration. Review of the literature indicates that the initial effect on hepatic bile flow of cholestatic agents such as Thorazine and estradiol 17β-glucuronide are on water flow and not bile salt export pump-mediated bile acid transport and thus provides new approaches to the pathogenesis of drug-induced liver injury. Attaining a micellar concentration of bile acids in the canaliculus is essential to the formation of cholesterol-lecithin vesicles, which mostly occur in the periportal region of the canalicular conduit. The other regions, midcentral and pericentral, may transport lesser amounts of bile acid but augment water flow. Broadening the concept of how hepatic bile flow is initiated, provides new insights into the pathogenesis of canalicular cholestasis.


1987 ◽  
Vol 262 (23) ◽  
pp. 11324-11330 ◽  
Author(s):  
S Ruetz ◽  
G Fricker ◽  
G Hugentobler ◽  
K Winterhalter ◽  
G Kurz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document