Relaxant effect of xenin on rat ileum is mediated by apamin-sensitive neurotensin-type receptors

1997 ◽  
Vol 272 (1) ◽  
pp. G190-G196 ◽  
Author(s):  
A. Clemens ◽  
S. Katsoulis ◽  
R. Nustede ◽  
J. Seebeck ◽  
K. Seyfarth ◽  
...  

The action of xenin, a novel 25-residue peptide of the neurotensin (NT)/xenopsin family, was investigated in isolated rat ileal muscle strips and in dispersed longitudinal smooth muscle cells of rat small intestine in vitro. Xenin relaxes KCl-precontracted ileal strips dose dependently (1 nM-3 microM). The order of potency of the investigated peptides was as follows: xenopsin = NT = xenin > neuromedin N. Kinetensin was inactive. Tetrodotoxin, hexamethonium, tetraethylammonium, 4-aminopyridine, and NG-nitro-L-arginine did not influence the relaxant effects of xenin or NT, whereas the K+ channel blocker apamin nearly abolished their effects. Desensitization against one of the peptides or blockade of NT receptors by SR-48692 prevented the effect of xenin and NT. Structure-activity experiments revealed that the COOH-terminal part of the molecules of xenin and NT is essential for biological activity. Experiments with isolated dispersed smooth muscle cells and binding studies on intestinal smooth muscle cell membranes confirmed and extended the results obtained with muscle strips. In conclusion, xenin relaxes rat ileal smooth muscle via a muscular NT-type apamin-sensitive receptor.

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3160
Author(s):  
Youngin Kwon ◽  
Chae Eun Haam ◽  
Seonhee Byeon ◽  
Soo Jung Choi ◽  
Dong-Hoon Shin ◽  
...  

Phellinus linteus is a well-known medicinal mushroom that is widely used in Asian countries. In several experimental models, Phellinus linteus extracts were reported to have various biological effects, including anti-inflammatory, anti-cancer, hepatoprotective, anti-diabetic, neuroprotective, and anti-angiogenic activity. In the present study, several bioactive compounds, including palmitic acid ethyl ester and linoleic acid, were identified in Phellinus linteus. The intermediate-conductance calcium-activated potassium channel (IKCa) plays an important role in the regulation of the vascular smooth muscle cells’ (VSMCs) contraction and relaxation. The activation of the IKCa channel causes the hyperpolarization and relaxation of VSMCs. To examine whether Phellinus linteus extract causes vasodilation in the mesenteric arteries of rats, we measured the isometric tension using a wire myograph. After the arteries were pre-contracted with U46619 (a thromboxane analogue, 1 µM), Phellinus linteus extract was administered. The Phellinus linteus extract induced vasodilation in a dose-dependent manner, which was independent of the endothelium. To further investigate the mechanism, we used the non-selective K+ channel blocker tetraethylammonium (TEA). TEA significantly abolished Phellinus linteus extract-induced vasodilation. Thus, we tested three different types of K+ channel blockers: iberiotoxin (BKca channel blocker), apamin (SKca channel blocker), and charybdotoxin (IKca channel blocker). Charybdotoxin significantly inhibited Phellinus linteus extract-induced relaxation, while there was no effect from apamin and iberiotoxin. Membrane potential was measured using the voltage-sensitive dye bis-(1,3-dibutylbarbituric acid)-trimethine oxonol (DiBAC4(3)) in the primary isolated vascular smooth muscle cells (VSMCs). We found that the Phellinus linteus extract induced hyperpolarization of VSMCs, which is associated with a reduced phosphorylation level of 20 KDa myosin light chain (MLC20).


2004 ◽  
Vol 286 (6) ◽  
pp. C1290-C1301 ◽  
Author(s):  
Sita Somara ◽  
Khalil N. Bitar

Displacement of the contractile protein tropomyosin from actin filament exposes the myosin-binding sites on actin, resulting in actin-myosin interaction and muscle contraction. The objective of the present study was to better understand the interaction of tropomyosin with heat shock protein (HSP)27 in contraction of smooth muscle cells of the colon. We investigated the possibility of a direct protein-protein interaction of tropomyosin with HSP27 and the role of phosphorylated HSP27 in this interaction. Immunoprecipitation studies on rabbit smooth muscle cells indicate that upon acetylcholine-induced contraction tropomyosin shows increased association with HSP27 phosphorylated at Ser82 and Ser78. Transfection of smooth muscle cells with HSP27 phosphorylation mutants indicated that the association of tropomyosin with HSP27 could be affected by HSP27 phosphorylation. In vitro binding studies with glutathione S-transferase (GST)-tagged HSP27 mutant proteins show that tropomyosin has greater direct interaction to phosphomimic HSP27 mutant compared with wild-type and nonphosphomimic HSP27. Our data suggest that, in response to a contractile agonist, HSP27 undergoes a rapid phosphorylation that may strengthen its interaction with tropomyosin.


2013 ◽  
Vol 1 (1) ◽  
pp. 9-13
Author(s):  
K Upadhyay-Dhungel ◽  
CJ Kim ◽  
A Dhungel

Background and objectives: Magnesium is established as a neuro-protective agent and now also known as a vasodilator. It has been known for treating vasospasm following subarachnoid hemorrhage. However, its action mechanism in cerebral vascular relaxation is not clear. Potassium channels play a pivotal role in the relaxation of smooth muscle cells. To investigate their role in magnesium-induced relaxation of basilar smooth muscle cells, we examined the effect of magnesium on potassium channels using the patch clamp technique on cells from rabbit basilar artery. Material and Methods: Fresh smooth muscle cells were isolated from the basilar artery by enzyme treatment. Whole cell current recording was done using patch-clamp technique. Appropriate bath solution was used to have potassium current. The effect of Magnesium was observed and to identify the potassium (K+) channel involved in the magnesium-induced currents, different potassium channel blockers were used. Results: Magnesium increased the step pulse-induced outward K+ currents by more than fortyfive percent over control level (p<0.01). The outward K+ current was decreased significantly by application of tetraethylammonium, a non-specific K+ channel blocker, and by iberiotoxin, a largeconductance Ca2+-activated K+ (BKCa) channel blocker, but was not inhibited by glibenclamide an ATP-sensitive K+ (KATP) channel blocker. Magnesium failed to increase the outward K+ currents in the presence of IBX. Conclusion: These results demonstrate that calcium dependent pottassium (BKCa) channels has role in magnesium induced vascular relaxation in rabbit basilar smooth muscle cells and needs to be worked out for human. DOI: http://dx.doi.org/10.3126/jmcjms.v1i1.7880 Janaki Medical College Journal of Medical Sciences (2013) Vol. 1 (1):9-13


Stem Cells ◽  
2007 ◽  
Vol 25 (2) ◽  
pp. 271-278 ◽  
Author(s):  
John van Tuyn ◽  
Douwe E. Atsma ◽  
Elizabeth M. Winter ◽  
Ietje van der Velde-van Dijke ◽  
Daniel A. Pijnappels ◽  
...  

1993 ◽  
Vol 265 (5) ◽  
pp. C1371-C1378 ◽  
Author(s):  
M. P. Walsh ◽  
J. D. Carmichael ◽  
G. J. Kargacin

Calponin isolated from chicken gizzard smooth muscle binds in vitro to actin in a Ca(2+)-independent manner and thereby inhibits the actin-activated Mg(2+)-adenosinetriphosphatase of smooth muscle myosin. This inhibition is relieved when calponin is phosphorylated by protein kinase C or Ca2+/calmodulin-dependent protein kinase II, suggesting that calponin is involved in thin filament-associated regulation of smooth muscle contraction. To further examine this possibility, calponin was isolated from toad stomach smooth muscle, characterized biochemically, and localized in intact isolated cells. Toad stomach calponin had the same basic biochemical properties as calponin from other sources. Confocal immunofluorescence microscopy revealed that calponin in intact smooth muscle cells was localized to long filamentous structures that were colabeled by antibodies to actin or tropomyosin. Preservation of the basic biochemical properties of calponin from species to species suggests that these properties are relevant for its in vivo function. Its colocalization with actin and tropomyosin indicates that calponin is associated with the thin filament in intact smooth muscle cells.


1976 ◽  
Vol 54 (6) ◽  
pp. 822-833 ◽  
Author(s):  
R. E. Garfield ◽  
E. E. Daniel

Smooth muscle cells of different densities to transmission of electrons (termed light and dark cells) were found in rat myometrium examined in the electron microscope following fixation by immersion in glutaraldehyde. Light cells accounted for about 4% of the total population of cells. No light cells were found in tissues fixed in situ by intraarterial perfusion with glutaraldehyde. In addition to staining differences, light cells were distinguished from most dark cells by differences in nuclear, mitochondrial, endoplasmic reticular, and surface structures. The relative number of light and dark cells after in vitro fixation was not changed in tissues relaxed with adrenaline or contracted with oxytocin. Mechanical injury resulted in increased numbers of light cells. Similarly, chemical injury with metabolic inhibitors resulted in ATP depletion, followed by increased numbers of light cells and gain in water content. We concluded that light cells were produced by mechanical or metabolic damage, leading to loss of volume control mechanisms, swelling, and leakage of protein. Light cells found after fixation in vitro in numerous prior studies represent cells damaged during isolation, and not a physiological variant among smooth muscle cells.


Sign in / Sign up

Export Citation Format

Share Document