Canalicular Mrp2 localization is reversibly regulated by the intracellular redox status

2008 ◽  
Vol 295 (5) ◽  
pp. G1035-G1041 ◽  
Author(s):  
Shuichi Sekine ◽  
Kousei Ito ◽  
Toshiharu Horie

Oxidative stress is known to be a common feature of cholestatic syndrome. We have described the internalization of multidrug resistance-associated protein 2 (Mrp2), a biliary transporter involved in bile salt-independent bile flow, under acute oxidative stress, and a series of signaling pathways finally leading to the activation of novel protein kinase C were involved in this mechanism; however, it has been unclear whether the internalized Mrp2 localization was relocalized to the canalicular membrane when the intracellular redox status was recovered from oxidative stress. In this study, we demonstrated that decreased canalicular expression of Mrp2 induced by tertiary-butyl hydroperoxide (t-BHP) was recovered to the canalicular membrane by the replenishment of GSH by GSH-ethyl ester, a cell-permeable form of GSH. Moreover, pretreatment of isolated rat hepatocytes with colchicine and PKA inhibitor did not affect the t-BHP-induced Mrp2 internalization process but did prevent the Mrp2 recycling process induced by GSH replenishment. Moreover, intracellular cAMP concentration similarly changed with the change of intracellular GSH content. Taken together, our data clearly indicate that the redox-sensitive balance of PKA/PKC activation regulates the reversible Mrp2 localization in two different pathways, the microtubule-independent internalization pathway and -dependent recycling pathway of Mrp2.

2007 ◽  
Vol 212 (1) ◽  
pp. 223-235 ◽  
Author(s):  
Marta Deganuto ◽  
Maria Gabriela Pittis ◽  
Alex Pines ◽  
Silvia Dominissini ◽  
Mark R. Kelley ◽  
...  

Oncogene ◽  
2002 ◽  
Vol 21 (24) ◽  
pp. 3872-3878 ◽  
Author(s):  
Mirella Trinei ◽  
Marco Giorgio ◽  
Angelo Cicalese ◽  
Sara Barozzi ◽  
Andrea Ventura ◽  
...  

Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 703
Author(s):  
Sílvia D. S. Pires ◽  
Rute Oliveira ◽  
Pedro Moradas-Ferreira ◽  
Marta V. Mendes

The oxidative stress response is a key mechanism that microorganisms have to adapt to changeling environmental conditions. Adaptation is achieved by a fine-tuned molecular response that extends its influence to primary and secondary metabolism. In the past, the role of the intracellular redox status in the biosynthesis of tacrolimus in Streptomyces tsukubaensis has been briefly acknowledged. Here, we investigate the impact of the oxidative stress response on tacrolimus biosynthesis in S. tsukubaensis. Physiological characterization of S. tsukubaensis showed that the onset of tacrolimus biosynthesis coincided with the induction of catalase activity. In addition, tacrolimus displays antioxidant properties and thus a controlled redox environment would be beneficial for its biosynthesis. In addition, S. tsukubaensis ∆ahpC strain, a strain defective in the H2O2-scavenging enzyme AhpC, showed increased production of tacrolimus. Proteomic and transcriptomic studies revealed that the tacrolimus over-production phenotype was correlated with a metabolic rewiring leading to increased availability of tacrolimus biosynthetic precursors. Altogether, our results suggest that the carbon source, mainly used for cell growth, can trigger the production of tacrolimus by modulating the oxidative metabolism to favour a low oxidizing intracellular environment and redirecting the metabolic flux towards the increase availability of biosynthetic precursors.


2015 ◽  
Vol 06 (06) ◽  
pp. 799-803 ◽  
Author(s):  
Magdalena Spasova Kondeva-Burdina ◽  
Viktor Bratkov ◽  
Rumyana Lubomirova Simeonova ◽  
Vessela Bisserova Vitcheva ◽  
Ilina Nikolaeva Krasteva ◽  
...  

2004 ◽  
Vol 84 (13) ◽  
pp. 1701-1707 ◽  
Author(s):  
V Valls-Bellés ◽  
MC Torres ◽  
P Muñiz ◽  
L Boix ◽  
ML González-Sanjose ◽  
...  

2013 ◽  
Vol 33 (5) ◽  
pp. 534-541 ◽  
Author(s):  
Y Li ◽  
Y Deng ◽  
Y Tang ◽  
H Yu ◽  
C Gao ◽  
...  

Accumulating evidence has shown that ethanol-induced iron overload plays a crucial role in the development and progression of alcoholic liver disease. We designed the present study to investigate the potential protective effect of quercetin, a naturally occurring iron-chelating antioxidant on alcoholic iron overload and oxidative stress. Ethanol-incubated (100 mmol/L) rat primary hepatocytes were co-treated by quercetin (100 µmol/L) and different dose of ferric nitrilotriacetate (Fe-NTA) for 24 h. When the hepatic enzyme releases in the culture medium, redox status of hepatocytes and the intercellular labile iron pool (LIP) level were assayed. Our data showed that Fe-NTA dose dependently induced cellular leakage of aspartate transaminase and lactate dehydrogenase, glutathione depletion, superoxide dismutase inactivation, and overproduction of malondialdehyde) and reactive oxygen species (ROS) of intact and especially ethanol-incubated hepatocytes. The oxidative damage resulted from ethanol, Fe-NTA, and especially their combined treatment was substantially alleviated by quercetin, accompanying the corresponding normalization of intercellular LIP level. Iron in excess, thus, may aggravate ethanol hepatotoxicity through Fenton-active LIP, and quercetin attenuated ethanol-induced iron and oxidative stress. To maintain intercellular LIP contributes to the hepatoprotective effect of quercetin besides its direct ROS-quenching activity.


Sign in / Sign up

Export Citation Format

Share Document