Aging impairs endothelium-dependent vasodilation in rat skeletal muscle arterioles

2002 ◽  
Vol 283 (4) ◽  
pp. H1662-H1672 ◽  
Author(s):  
Judy M. Muller-Delp ◽  
Scott A. Spier ◽  
Michael W. Ramsey ◽  
Michael D. Delp

Blood flow capacity in skeletal muscle declines with age. Reduced blood flow capacity may be related to decline in the maximal vasodilatory capacity of the resistance vasculature. This study tested the hypothesis that aging results in impaired vasodilatory capacity of first-order (1A) arterioles isolated from rat-hindlimb locomotory muscle: 1A arterioles (90–220 μm) from gastrocnemius and soleus muscles of young (4 mo) and aged (24 mo) Fischer-144 rats were isolated, cannulated, and pressurized via hydrostatic reservoirs. Vasodilatory responses to increasing concentrations of ACh (10−9 to 10−4 M), adenosine (ADO, 10−10 to 10−4 M), and sodium nitroprusside (SNP, 10−10 to 10−4 M) were evaluated at a constant intraluminal pressure of 60 cmH2O in the absence of flow. Flow-induced vasodilation was also evaluated in the absence of pressure changes. Responses to ADO and SNP were not altered by age. Endothelium-dependent vasodilation induced by flow was significantly reduced in arterioles from both gastrocnemius and soleus muscles. In contrast, endothelium-dependent vasodilation to ACh was reduced only in soleus muscle arterioles. These results indicate that aging impairs vasodilatory responses mediated through the endothelium of resistance arterioles from locomotory muscle, whereas smooth muscle vasodilatory responses remain intact with aging. Additionally, ACh-induced vasodilation was altered by age only in soleus muscle arterioles, suggesting that the mechanism of age-related endothelial impairment differs in arterioles from soleus and gastrocnemius muscles.

2002 ◽  
Vol 282 (5) ◽  
pp. H1843-H1854 ◽  
Author(s):  
Judy Muller-Delp ◽  
Scott A. Spier ◽  
Michael W. Ramsey ◽  
Lisa A. Lesniewski ◽  
Anthony Papadopoulos ◽  
...  

Exercise capacity and skeletal muscle blood flow during exercise are reduced with advancing age. This reduction in blood flow capacity may be related to increased reactivity of skeletal muscle resistance vessels to vasoconstrictor stimuli. The purpose of this study was to test the hypothesis that aging results in increased vasoconstrictor responses of skeletal muscle resistance arterioles. First-order (1A) arterioles (90–220 μm) from the gastrocnemius and soleus muscles of young (4 mo) and aged (24 mo) Fischer-344 rats were isolated, cannulated, and pressurized via hydrostatic reservoirs. Vasoconstriction in response to increases in norepinephrine (NE; 1 × 10−9–1 × 10−4 M) and KCl (20–100 mM) concentrations and increases in intraluminal pressure (10–130 cmH2O) were evaluated in the absence of flow. Responses to NE and KCl were similar in both soleus and gastrocnemius muscle arterioles from young and aged rats. In contrast, active myogenic responses to changes in intraluminal pressure were diminished in soleus and gastrocnemius arterioles from aged rats. To assess whether alterations in the mechanical properties of resistance arterioles underlie altered myogenic responsiveness, passive diameter responses to pressure and mechanical stiffness were evaluated. There was no effect of age on the structural behavior (passive pressure-diameter relationship) or stiffness of arterioles from either the soleus or gastrocnemius muscles. These results suggest that aging does not result in a nonspecific decrease in vasoconstrictor responsiveness of skeletal muscle arterioles. Rather, aging-induced adaptations of vasoreactivity of resistance arterioles appear to be limited to mechanisms that are uniquely involved in the signaling of the myogenic response.


2007 ◽  
Vol 103 (4) ◽  
pp. 1172-1179 ◽  
Author(s):  
Christopher R. Woodman ◽  
Daniel W. Trott ◽  
M. Harold Laughlin

We tested the hypothesis that short-term increases in intraluminal pressure improve endothelium-dependent dilation and increase endothelial nitric oxide (NO) synthase (eNOS) expression in senescent soleus muscle feed arteries (SFA). SFA isolated from young (4 mo) and old (24 mo) Fischer 344 rats were cannulated and pressurized at 90 (p90) or 130 (p130) cmH2O for 4 h. At the end of the 4-h protocol, pressure in p130 SFA was lowered to 90 cmH2O for examination of endothelium-dependent (flow- or ACh-induced) vasodilation. Flow- and ACh-induced dilations were blunted in old p90 SFA relative to young p90 SFA. Pretreatment with increased pressure (p130) improved flow- and ACh-induced dilations in old SFA, such that vasodilator responses were similar to those in young SFA. In the presence of Nω-nitro-l-arginine (l-NNA) or l-NNA + indomethacin (Indo), flow-induced dilation was inhibited in old p130 SFA, such that the response was not greater than the response in old p90 SFA. In old p130 SFA, ACh-induced dilation was inhibited by l-NNA + Indo (not l-NNA alone). In a separate experiment, SFA were pressurized at 70, 90, 110, or 130 cmH2O for 4 h, and eNOS mRNA and protein content were assessed. Increased pressure induced eNOS mRNA expression in young (not old) SFA. eNOS protein content was not altered in young or old SFA. These results indicate that short-term increases in intraluminal pressure improve endothelium-dependent dilation in senescent SFA, in part by enhancing NO bioavailability; however, the beneficial effect was not associated with increased eNOS expression.


2004 ◽  
Vol 97 (2) ◽  
pp. 764-772 ◽  
Author(s):  
Jefferson C. Frisbee

The present study tested the hypothesis that enhanced vascular α-adrenergic constriction in obese Zucker rats (OZR) impairs arteriolar dilation and perfusion of skeletal muscle at rest and with increased metabolic demand. In lean Zucker rats (LZR) and OZR, isolated gracilis arterioles were viewed via television microscopy, and the contralateral cremaster muscle or gastrocnemius muscle was prepared for study in situ. Gracilis and cremasteric arterioles were challenged with dilator stimuli under control conditions and after blockade of α-adrenoreceptors with prazosin, phentolamine, or yohimbine. Gastrocnemius muscles performed isometric twitch contractions of increasing frequency, and perfusion was continuously monitored. In OZR, dilator responses of arterioles to hypoxia (gracilis), wall shear rate (cremaster), acetylcholine, and iloprost (both) were impaired vs. LZR. Treatment with prazosin and phentolamine (and in cremasteric arterioles only, yohimbine) improved arteriolar reactivity to these stimuli in OZR, although responses remained impaired vs. LZR. Gastrocnemius muscle blood flow was reduced at rest in OZR; this was corrected with intravenous infusion of phentolamine or prazosin. At all contraction frequencies, blood flow was reduced in OZR vs. LZR; this was improved by infusion of phentolamine or prazosin at low-moderate metabolic demand only (1 and 3 Hz). At 5 Hz, adrenoreceptor blockade did not alter blood flow in OZR from levels in untreated rats. These results suggest that enhanced α-adrenergic constriction of arterioles of OZR contributes to impaired dilator responses and reduced muscle blood flow at rest and with mild-moderate (although not with large) elevations in metabolic demand.


1996 ◽  
Vol 271 (1) ◽  
pp. H267-H272 ◽  
Author(s):  
G. Dornyei ◽  
E. Monos ◽  
G. Kaley ◽  
A. Koller

The pressure-induced myogenic response of large venules of skeletal muscle and its possible interactions with adrenergic receptor activation and endothelial factors have not yet been elucidated. Therefore, first-order venules of rat gracilis muscle were isolated, cannulated, and placed in an organ chamber. Changes in internal diameter of the vessels as a function of perfusion pressure (PP) were obtained. In response to increases in PP (0.5-17.5 mmHg), the diameter of venules increased from 197.1 +/- 23.96 to 369 +/- 14.1 microns. In passive conditions (in Ca(2+)-free solution), the pressure-diameter curve of venules shifted significantly upward. In the presence of norepinephrine (NE; 10(-6) M) in the bath solution, the pressure-diameter curve of active venules shifted significantly downward, and in the pressure-normalized diameter curve, a negative slope developed (-6.1 +/- 4.6). In both the absence and presence of NE, removal of endothelium significantly reduced venular diameters in the pressure ranges of 3-5 and 2-5 mmHg, respectively, but did not change significantly the characteristics of the pressure-diameter curves. These findings indicate that the smooth muscle of venules actively responds to changes in intraluminal pressure. This response is greatly facilitated by NE and modulated by the endothelium. The myogenic response of skeletal muscle venules, especially in the presence of NE, could have a role in the regulation of the resistance and capacitance of venules and, consequently, blood flow and tissue exchange in skeletal muscle.


1991 ◽  
Vol 260 (1) ◽  
pp. H130-H135 ◽  
Author(s):  
J. C. Falcone ◽  
M. J. Davis ◽  
G. A. Meininger

The goal of this study was to determine whether the endothelium played a role in the myogenic response of skeletal muscle arterioles. First-order arterioles (n = 15) were isolated from the rat cremaster muscle and cannulated for in vitro study. The development of spontaneous tone reduced the diameter of the isolated arterioles from 166.7 +/- 7.6 microns to 89.2 +/- 7.2 microns. The arterioles were exposed to step changes in intraluminal pressure over a range of 10–170 cmH2O and had no flow through their lumen. The vessels exhibited active constriction to step increases or active dilation to step decreases in pressure (50–150 cmH2O). At 90 cmH2O, arterioles dilated by 89.2 +/- 6.0% in response to the endothelium-dependent vasodilator acetylcholine (10(-6) M; ACh) and 89.6 +/- 10.9% in response to endothelium-independent dilator adenosine (10(-4) M; Ado). The endothelium was physically denuded by rubbing the vessel lumen. After denudation, the arteriolar dilation to ACh was abolished, whereas the dilation to Ado was unaltered. The absence of endothelium was verified by electron microscopy. Basal tone and the response to changes in pressure were not significantly different from endothelium-intact vessels. These studies indicate that the endothelium is not responsible for myogenic activity or development of spontaneous tone in skeletal muscle arterioles.


2000 ◽  
Vol 89 (1) ◽  
pp. 398-405 ◽  
Author(s):  
Matthew R. McCurdy ◽  
Patrick N. Colleran ◽  
Judy Muller-Delp ◽  
Michael D. Delp

It has been hypothesized that microgravity-induced orthostatic hypotension may result from an exaggerated vasodilatory responsiveness of arteries. The purpose of this study was to determine whether skeletal muscle arterioles exhibit enhanced vasodilation in rats after 2 wk of hindlimb unloading (HU). First-order arterioles isolated from soleus and white gastrocnemius muscles were tested in vitro for vasodilatory responses to isoproterenol (Iso), adenosine (Ado), and sodium nitroprusside (SNP). HU had no effect on responses induced by Iso but diminished maximal vasodilation to Ado and SNP in both muscles. In addition, vasodilatory responses in arterioles from control rats varied between muscle types. Maximal dilations induced by Iso (soleus: 42 ± 6%; white gastrocnemius: 60 ± 7%) and Ado (soleus: 51 ± 8%; white gastrocnemius: 81 ± 6%) were greater in arterioles from white gastrocnemius muscles. These data do not support the hypothesis that microgravity-induced orthostatic hypotension results from an enhanced vasodilatory responsiveness of skeletal muscle arterioles. Furthermore, the data support the concept that dilatory responsiveness of arterioles varies in muscle composed of different fiber types.


1996 ◽  
Vol 271 (4) ◽  
pp. C1032-C1040 ◽  
Author(s):  
N. Narayanan ◽  
D. L. Jones ◽  
A. Xu ◽  
J. C. Yu

The impact of aging on the Ca2+ pump function of skeletal muscle sarcoplasmic reticulum (SR) was investigated using SR-enriched membrane vesicles isolated from the slow-twitch soleus muscle (SM) and the relatively fast-twitch gastrocnemius muscle (GM) isolated from adult (6-8 mo old) and aged (26-28 mo old) Fischer 344 rats. In addition, isometric twitch characteristics of SM and GM were determined in situ in adult and aged rats under anesthesia. The rates of ATP-supported Ca2+ uptake by SM SR was markedly lower ( approximately 50%) in the aged compared with adult at varying Ca2+ (0.11-8.24 microM) concentrations. Kinetic analysis of the data revealed age-associated decrease in maximum activity reached (Vmax) and increase in the concentration of Ca2+ giving half of Vmax. In contrast, no significant age-related difference was observed in ATP-supported Ca2+ uptake activity of GM SR. The Ca(2+)-stimulated adenosinetriphosphatase (ATPase) activities and the amount of Ca(2+)-ATPase protein did not vary significantly with aging in SM or GM SR. Also, no significant age-related difference was observed in the content of the ryanodine receptor (Ca(2+)-release channel) or the Ca2+ binding protein, calsequestrin in SM and GM SR. In isometrically contracting SM, the time to peak force, half-relaxation time, and contraction duration were significantly prolonged in the aged compared with adult, whereas there was no age-related difference in maximum developed force. None of these isometric twitch parameters differed significantly with age in the GM. These results demonstrate that the effects of aging on skeletal muscle contractile properties and SR function are muscle specific. Furthermore, the data strongly suggest that impairment in SR Ca2+ pump function, apparently due to uncoupling of ATP hydrolysis from Ca2+ transport, contributes to the age-associated slowing of relaxation in the soleus muscle.


2021 ◽  
Author(s):  
Changsi Cai ◽  
Stefan Andreas Zambach ◽  
Soeren Grubb ◽  
Kirsten Joan Thomsen ◽  
Barbara Lykke Lind ◽  
...  

The microvascular inflow tract (MIT), i.e. penetrating arterioles, precapillary sphincters and first order capillaries, is the bottleneck for brain blood flow and energy supply. However, the exact structural and functional alterations during aging remain elusive. Using in vivo 4-dimensional (xyzt) two-photon imaging, we showed an age-dependent decrease in vaso-responsivity, which was accompanied by reduced sensitivity of MIT to pinacidil and papaverine, and to vasoconstrictors endothelin-1 and to L-NAME, a nitric oxide synthase inhibitor. Reduced responsivity was accompanied by an age-dependent decrease in capillary density close to the arterioles and by loss of pericyte processes, whereas the number of pericyte somas and the pericyte αSMA density were preserved. The age-related reduction in vascular reactivity was most pronounced at precapillary sphincters, highlighting its crucial role for capillary blood flow regulation. Mathematical modeling further revealed dysregulated but protected pressure and flow in aged mice towards vasoconstriction. Prevention of reduced responsivity of the MIT may ameliorate the blood flow decrease associated with brain aging and age-related brain frailty.


2011 ◽  
Vol 301 (5) ◽  
pp. R1408-R1417 ◽  
Author(s):  
E. Lichar Dillon ◽  
Shanon L. Casperson ◽  
William J. Durham ◽  
Kathleen M. Randolph ◽  
Randall J. Urban ◽  
...  

The combination of increasing blood flow and amino acid (AA) availability provides an anabolic stimulus to the skeletal muscle of healthy young adults by optimizing both AA delivery and utilization. However, aging is associated with a blunted response to anabolic stimuli and may involve impairments in endothelial function. We investigated whether age-related differences exist in the muscle protein anabolic response to AAs between younger (30 ± 2 yr) and older (67 ± 2 yr) adults when macrovascular and microvascular leg blood flow were similarly increased with the nitric oxide (NO) donor, sodium nitroprusside (SNP). Regardless of age, SNP+AA induced similar increases above baseline ( P ≤ 0.05) in macrovascular flow (4.3 vs. 4.4 ml·min−1·100 ml leg−1 measured using indocyanine green dye dilution), microvascular flow (1.4 vs. 0.8 video intensity/s measured using contrast-enhanced ultrasound), phenylalanine net balance (59 vs. 68 nmol·min−1·100 ml·leg−1), fractional synthetic rate (0.02 vs. 0.02%/h), and model-derived muscle protein synthesis (62 vs. 49 nmol·min−1·100 ml·leg−1) in both younger vs. older individuals, respectively. Provision of AAs during NO-induced local skeletal muscle hyperemia stimulates skeletal muscle protein metabolism in older adults to a similar extent as in younger adults. Our results suggest that the aging vasculature is responsive to exogenous NO and that there is no age-related difference per se in AA-induced anabolism under such hyperemic conditions.


Sign in / Sign up

Export Citation Format

Share Document