scholarly journals Cardiac mTOR rescues the detrimental effects of diet-induced obesity in the heart after ischemia-reperfusion

2015 ◽  
Vol 308 (12) ◽  
pp. H1530-H1539 ◽  
Author(s):  
Toshinori Aoyagi ◽  
Jason K. Higa ◽  
Hiroko Aoyagi ◽  
Naaiko Yorichika ◽  
Briana K. Shimada ◽  
...  

Diet-induced obesity deteriorates the recovery of cardiac function after ischemia-reperfusion (I/R) injury. While mechanistic target of rapamycin (mTOR) is a key mediator of energy metabolism, the effects of cardiac mTOR in ischemic injury under metabolic syndrome remains undefined. Using cardiac-specific transgenic mice overexpressing mTOR (mTOR-Tg mice), we studied the effect of mTOR on cardiac function in both ex vivo and in vivo models of I/R injury in high-fat diet (HFD)-induced obese mice. mTOR-Tg and wild-type (WT) mice were fed a HFD (60% fat by calories) for 12 wk. Glucose intolerance and insulin resistance induced by the HFD were comparable between WT HFD-fed and mTOR-Tg HFD-fed mice. Functional recovery after I/R in the ex vivo Langendorff perfusion model was significantly lower in HFD-fed mice than normal chow diet-fed mice. mTOR-Tg mice demonstrated better cardiac function recovery and had less of the necrotic markers creatine kinase and lactate dehydrogenase in both feeding conditions. Additionally, mTOR overexpression suppressed expression of proinflammatory cytokines, including IL-6 and TNF-α, in both feeding conditions after I/R injury. In vivo I/R models showed that at 1 wk after I/R, HFD-fed mice exhibited worse cardiac function and larger myocardial scarring along myofibers compared with normal chow diet-fed mice. In both feeding conditions, mTOR overexpression preserved cardiac function and prevented myocardial scarring. These findings suggest that cardiac mTOR overexpression is sufficient to prevent the detrimental effects of diet-induced obesity on the heart after I/R, by reducing cardiac dysfunction and myocardial scarring.

2017 ◽  
Vol 16 (4) ◽  
pp. 1593-1604 ◽  
Author(s):  
Andreas Oberbach ◽  
Sven-Bastiaan Haange ◽  
Nadine Schlichting ◽  
Marco Heinrich ◽  
Stefanie Lehmann ◽  
...  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Qunhua Huang ◽  
April Kalinowski ◽  
Kashif Jafri ◽  
Monica Palmeri ◽  
Raymond R Russell ◽  
...  

The neuregulin-1 (NRG)/erbB signaling axis is emerging as an important mediator of endothelial/myocyte crosstalk. We have previously shown that NRG can protect cardiac myocytes from apoptosis induced by hypoxic injury and that endothelial cells can provide this NRG in an ex vivo co-culture model. To extend this observation to an intact animal system, we have generated mice with inducible and endothelial-selective deletion of NRG. We hypothesized that animals with decreased endothelial NRG expression would be more susceptible to ischemic injury. Mice carrying a transgene for tamoxifen-inducible expression of cre recombinase under control of the Tie2 promoter were crossed with those carrying homozygously floxed NRG-1 genes. Serial echocardiographic measurements of cardiac function were performed before, during and after tamoxifen induction. There was no significant decrease in cardiac function following the completion of the induction (NRG knockout) protocol. Hearts from these mice underwent a global ischemia/reperfusion protocol in the Langendorff mode. Both resting and post-ischemic +/−dP/dT and left ventricular developed pressure were impaired in the animals with endothelial selective NRG deletion compared to non-induced transgenics or tamoxifen-induced controls. Hearts from the NRG deleted animals released more CPK and contained significantly more apoptotic nuclei compared to controls after ischemia/reperfusion, supporting the idea that endothelial-derived NRG can protect myocytes against apoptosis in vivo. Another mechanism by which loss of NRG may contribute to cardiac dysfunction in the setting of ischemia is by altering cardiac myocyte glucose uptake. We have shown that adult rat cardiomyocyte glucose uptake is significantly increased in response to NRG and that this response is abrogated partially by wortmannin, but completely by wortmannin plus compound C (an inhibitor of AMP-activated protein kinase), suggesting that both AKT and AMPK dependent pathways of glucose uptake may be activated by NRG in adult myocytes. Thus, we conclude that NRG plays an important role in preservation of cardiac myocyte function in vivo and that this may occur as a result of both protection against apoptosis and enhanced glucose metabolism.


Endocrinology ◽  
2020 ◽  
Vol 161 (10) ◽  
Author(s):  
Yu-Feng Zhao ◽  
Xiao-Cheng Li ◽  
Xiang-Yan Liang ◽  
Yan-Yan Zhao ◽  
Rong Xie ◽  
...  

Abstract The free fatty acid receptor G protein-coupled receptor 120 (GPR120) is expressed in pancreatic islets, but its specific cell distribution and function have not been fully established. In this study, a GPR120-IRES-EGFP knockin (KI) mouse was generated to identify GPR120-expressing cells with enhanced green fluorescence proteins (EGFP). EGFP-positive cells collected from KI mouse islets by flow cytometry had a significantly higher expression of pancreatic polypeptide (PP) evidenced by reverse transcriptase (RT)-quantitative polymerase chain reaction (qPCR). Single-cell RT-PCR and immunocytochemical double staining also demonstrated the coexpression of GPR120 with PP in mouse islets. The GPR120-specific agonist TUG-891 significantly increased plasma PP levels in mice. TUG-891 significantly increased PP levels in islet medium in vitro, which was markedly attenuated by GPR120 small interfering RNA treatment. TUG-891–stimulated PP secretion in islets was fully blocked by pretreatment with YM-254890 (a Gq protein inhibitor), U73122 (a phospholipase C inhibitor), or thapsigargin (an inducer of endoplasmic reticulum Ca2+ depletion), respectively. TUG-891 triggered the increase in intracellular free Ca2+ concentrations ([Ca2+]i) in PP cells, which was also eliminated by YM-254890, U73122, or thapsigargin. GPR120 gene expression was significantly reduced in islets of high-fat diet (HFD)-induced obese mice. TUG-891–stimulated PP secretion was also significantly diminished in vivo and in vitro in HFD-induced obese mice compared with that in normal-chow diet control mice. In summary, this study demonstrated that GPR120 is expressed in mouse islet PP cells and GPR120 activation stimulated PP secretion via the Gq/PLC-Ca2+ signaling pathway in normal-chow diet mice but with diminished effects in HFD-induced obese mice.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Karla G. Schwarz ◽  
Katherin V. Pereyra ◽  
Camilo Toledo ◽  
David C. Andrade ◽  
Hugo S. Díaz ◽  
...  

Abstract Background Chronic heart failure (CHF) is a global health problem. Increased sympathetic outflow, cardiac arrhythmogenesis and irregular breathing patterns have all been associated with poor outcomes in CHF. Several studies showed that activation of the renin-angiotensin system (RAS) play a key role in CHF pathophysiology. Interestingly, potassium (K+) supplemented diets showed promising results in normalizing RAS axis and autonomic dysfunction in vascular diseases, lowering cardiovascular risk. Whether subtle increases in dietary K+ consumption may exert similar effects in CHF has not been previously tested. Accordingly, we aimed to evaluate the effects of dietary K+ supplementation on cardiorespiratory alterations in rats with CHF. Methods Adult male Sprague–Dawley rats underwent volume overload to induce non-ischemic CHF. Animals were randomly allocated to normal chow diet (CHF group) or supplemented K+ diet (CHF+K+ group) for 6 weeks. Cardiac arrhythmogenesis, sympathetic outflow, baroreflex sensitivity, breathing disorders, chemoreflex function, respiratory–cardiovascular coupling and cardiac function were evaluated. Results Compared to normal chow diet, K+ supplemented diet in CHF significantly reduced arrhythmia incidence (67.8 ± 15.1 vs. 31.0 ± 3.7 events/hour, CHF vs. CHF+K+), decreased cardiac sympathetic tone (ΔHR to propranolol: − 97.4 ± 9.4 vs. − 60.8 ± 8.3 bpm, CHF vs. CHF+K+), restored baroreflex function and attenuated irregular breathing patterns. Additionally, supplementation of the diet with K+ restores normal central respiratory chemoreflex drive and abrogates pathological cardio-respiratory coupling in CHF rats being the outcome an improved cardiac function. Conclusion Our findings support that dietary K+ supplementation in non-ischemic CHF alleviate cardiorespiratory dysfunction.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Qian Chen ◽  
Elizabeth Eun Jung Kim ◽  
Katrina Elio ◽  
Christopher Zambrano ◽  
Samuel Krass ◽  
...  

Reduced nitric oxide (NO) bioavailability and increased oxidative stress are major factors mediating ischemia/reperfusion (I/R) injury. Tetrahydrobiopterin (BH4) is an essential cofactor of endothelial NO synthase (eNOS) to produce NO, whereas dihydrobiopterin (BH2) can shift the eNOS product profile from NO to superoxide, which is further converted to hydrogen peroxide (H2O2) and cause I/R injury. The effects ofBH4andBH2on oxidative stress and postreperfused cardiac functions were examined in ex vivo myocardial and in vivo femoral I (20 min)/R (45 min) models. In femoral I/R,BH4increased NO and decreasedH2O2releases relative to saline control, and these effects correlated with improved postreperfused cardiac function. By contrast,BH2decreased NO release relative to the saline control, but increasedH2O2release similar to the saline control, and these effects correlated with compromised postreperfused cardiac function. In conclusion, these results suggest that promoting eNOS coupling to produce NO and decreaseH2O2may be a key mechanism to restore postreperfused organ function during early reperfusion.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Mi Tian ◽  
Jingjing Wang ◽  
Shangming Liu ◽  
Xinyun Li ◽  
Jingyuan Li ◽  
...  

AbstractThe liver plays an important role in lipid and glucose metabolism. Here, we show the role of human antigen R (HuR), an RNA regulator protein, in hepatocyte steatosis and glucose metabolism. We investigated the level of HuR in the liver of mice fed a normal chow diet (NCD) and a high-fat diet (HFD). HuR was downregulated in the livers of HFD-fed mice. Liver-specific HuR knockout (HuRLKO) mice showed exacerbated HFD-induced hepatic steatosis along with enhanced glucose tolerance as compared with control mice. Mechanistically, HuR could bind to the adenylate uridylate-rich elements of phosphatase and tensin homolog deleted on the chromosome 10 (PTEN) mRNA 3′ untranslated region, resulting in the increased stability of Pten mRNA; genetic knockdown of HuR decreased the expression of PTEN. Finally, lentiviral overexpression of PTEN alleviated the development of hepatic steatosis in HuRLKO mice in vivo. Overall, HuR regulates lipid and glucose metabolism by targeting PTEN.


Sign in / Sign up

Export Citation Format

Share Document