scholarly journals Pathophysiology of cardiorenal syndrome in patients with heart failure: potential therapeutic targets

2017 ◽  
Vol 313 (4) ◽  
pp. H715-H721 ◽  
Author(s):  
Hiroyuki Takahama ◽  
Masafumi Kitakaze

Despite the development of pharmacological inventions and new nonpharmacological techniques to prevent and treat heart failure (HF), the mortality rate in patients with symptomatic HF remains high. To conquer these difficulties, the pathophysiology of HF should be considered within a wide range of views. Given the diverse mechanisms of HF pathophysiology, renal and cardiac functions have close and complementary interconnections. Recent studies have suggested that communication between the kidney and heart through bidirectional pathways causes significant pathological changes. This review summarizes the pathophysiology of cardiorenal syndrome (CRS) from three different viewpoints, namely, underlying chronic kidney disease, worsening renal function during hospitalization due to HF, and resistance to diuretics. We also summarize the presently available data on the pathophysiology of CRS, identify the challenges associated with some clinical approaches, and explore the potential therapeutic target for CRS.

Author(s):  
Aaron M. Hein ◽  
Julia J. Scialla ◽  
Jie-Lena Sun ◽  
Stephen J. Greene ◽  
Linda K. Shaw ◽  
...  

2021 ◽  
Vol 7 ◽  
Author(s):  
Wilson Matthew Raffaello ◽  
Joshua Henrina ◽  
Ian Huang ◽  
Michael Anthonius Lim ◽  
Leonardo Paskah Suciadi ◽  
...  

Heart failure is currently one of the leading causes of morbidity and mortality. Patients with heart failure often present with acute symptoms and may have a poor prognosis. Recent evidence shows differences in clinical characteristics and outcomes between de novo heart failure (DNHF) and acute decompensated chronic heart failure (ADCHF). Based on a better understanding of the distinct pathophysiology of these two conditions, new strategies may be considered to treat heart failure patients and improve outcomes. In this review, the authors elaborate distinctions regarding the clinical characteristics and outcomes of DNHF and ADCHF and their respective pathophysiology. Future clinical trials of therapies should address the potentially different phenotypes between DNHF and ADCHF if meaningful discoveries are to be made.


2018 ◽  
Vol 12 (3) ◽  
pp. 154-160
Author(s):  
Yohei Ono ◽  
Hiroto Takamatsu ◽  
Masahiro Inoue ◽  
Yukio Mabuchi ◽  
Tetsuya Ueda ◽  
...  

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Angela Castellanos Rieger ◽  
Bryon A Tompkins ◽  
Makoto Natsumeda ◽  
Victoria Florea ◽  
Kevin Collon ◽  
...  

Background: Chronic Kidney Disease (CKD) is an independent risk factor for cardiovascular morbidity and mortality. Left ventricular (LV) hypertrophy and heart failure with preserved ejection fraction (HFpEF) are the primary manifestations of the cardiorenal syndrome in 60 to 80% of CKD patients. Therapies that improve morbidity and mortality in HFpEF are lacking. Stem cell therapy reduces fibrosis, increases neovascularization, and promotes cardiac repair in ischemic and non-ischemic cardiomyopathies. We hypothesized that stem cell treatment ameliorates HFpEF in a CKD model. Methods: Yorkshires pigs (n=27) underwent 5/6 nephrectomy via renal artery embolization and 4-weeks later received either: allogeneic (allo-) MSC (10х10 6 ), allo-kidney c-kit + cells (c-kit; 10х10 6 ), combination (MSC+c-kit; 1:1 ratio [5х10 6 each]), or placebo (each n=5). Cell therapy was delivered via the patent renal artery. Kidney function, renal and cardiac MRI, and PV loops were measured at baseline, and at 4- and 12-weeks (euthanasia) post-embolization. Results: The CKD model was confirmed by increased creatinine and BUN and decreased GFR. Mean arterial pressure (MAP) was not different between groups from baseline to 4 weeks (p=0.7). HFpEF was demonstrated at 4 weeks by increased LV mass (20.3%; p= 0.0001), wall thickening (p<0.008), EDP (p=0.01), EDPVR (p=0.005), and arterial elastance (p=0.03), with no change in EF. Diffuse intramyocardial fibrosis was evident in histological analysis and delayed enhancement MRI imaging. After 12 weeks, there was a significant difference in MAP between groups (p=0.04), with an increase in the placebo group (19.97± 8.65 mmHg, p=0.08). GFR significantly improved in the combination group (p=0.033). EDV increased in the placebo (p=0.009) and c-kit (p=0.004) groups. ESV increased most in the placebo group (7.14±1.62ml; p=0.022). EF, wall thickness, and LV mass did not differ between groups at 12 weeks. Conclusion: A CKD large animal model manifests the characteristics of HFpEF. Intra-renal artery allogeneic cell therapy was safe. A beneficial effect of cell therapy was observed in the combination and MSC groups. These findings have important implications on the use of cell therapy for HFpEF and cardiorenal syndrome.


2020 ◽  
Vol 125 (1) ◽  
pp. 76-81 ◽  
Author(s):  
Jessie van Wezenbeek ◽  
Justin M. Canada ◽  
Krishna Ravindra ◽  
Salvatore Carbone ◽  
Dinesh Kadariya ◽  
...  

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Eleni Petra ◽  
Tianlin He ◽  
Agnieszka Latosinska ◽  
Rafael Stroggilos ◽  
Harald Mischak ◽  
...  

Abstract Background and Aims The cardiorenal syndrome (CRS) reflects the complex interplay between kidney and heart diseases, but its molecular basis remains poorly understood. Multiple studies have demonstrated the association of urinary biomarkers with both heart and kidney diseases. However, their relevance and involvement in CRS have not been investigated yet. To address this gap, a study was designed with the aim to compare urinary biomarkers specific for heart failure (HF) and chronic kidney disease (CKD) with peptides representing CRS, with the ultimate target to connect these findings towards a better understanding of CRS pathophysiology. Method A total of 3.463 urinary peptidomic datasets from patients with HF, CKD, or with both HF and CKD (CRS) as well as patients with no apparent diseases (controls) were retrieved and analyzed from the urinary peptidomics database (Latosinska A et al., Electrophoresis 2019; 40: 2294-2308). Following the matching for age, gender, heart and kidney function, differences in the abundance of urinary peptides were investigated in a cohort comprised of 390 patients with HF, 257 patients with CKD, 392 patients with CRS and 356 controls. The non-parametric Mann-Whitney U test was applied, followed by correction for multiple testing using the Benjamini-Hochberg method. To map the peptides to the protein precursor, the alignment tool Geneious (www. geneious.com) was applied, while the PeptideRanker (http://distilldeep.ucd.ie/PeptideRanker/) was used to predict probability of peptide being bioactive. Results The multiple pair-wise comparisons resulted in the identification of numerous differentially abundant peptides (p&lt;0.05) between the studied conditions, including among others 176 HF-specific, 146 CKD-specific and 35 CRS-specific peptides. Among the HF-specific peptides, the majority (n=94, 53.4%) originated from collagen type I, II and III. In the case of CKD-specific peptides, 24 (16.43%) originated from alpha-1-antitrypsin, 19 (13.0%) from b2-microglobulin and 15 (10.27%) from collagen type I. For the CRS specific peptides, fragments of Ig lambda-2 chain C regions (n=4, 11.42%), collagen type III (n=4, 11.42%), secreted and transmembrane protein 1 (n=3, 8.57%) and gelsolin (n=1, 2.85%) were identified (figure: 1). Of the 176 HF-specific peptides, 94 (53.40%) were predicted as bioactive, including, among others, fragments of collagen types I (n=43, 45.74%) and III (n=21, 22.34%). In the former, peptides with the higher bioactivity scores were aligned close to the N terminus of the precursor protein, whereas in the latter, peptides were in close proximity to both N and C termini. Along the same lines, 32 (21.91%) of the 146 CKD-specific peptides were predicted as bioactive, including peptides from collagen types I and III with the highest score, as well as fragments from collagen type V and the C terminus of the b2-microglobulin and alpha-1-antitrypsin proteins. No CRS-specific peptides could be predicted as bioactive. Conclusion Specific urinary peptides significantly associated with CRS, but not with HF or CKD, could be identified. These data indicate that on a molecular level, CRS is not merely the result of a combination of HF and CKD, but may represent a distinct pathology, defined via specific proteomic changes. It is expected that interpretation of these findings in the context of existing literature as well as in vitro activity assays will help to understand their biological relevance in CRS.


Sign in / Sign up

Export Citation Format

Share Document