scholarly journals Innate immunity mediates myocardial preconditioning through Toll-like receptor 2 and TIRAP-dependent signaling pathways

2010 ◽  
Vol 298 (3) ◽  
pp. H1079-H1087 ◽  
Author(s):  
Jian-Wen Dong ◽  
Jesus G. Vallejo ◽  
Huei-Ping Tzeng ◽  
James A Thomas ◽  
Douglas L. Mann

Recent studies have implicated Toll-like receptor 2 (TLR2) and TLR4 signaling in delimiting liver and brain injury following ischemia-reperfusion (I/R). To determine whether TLR2 and TLR4 conferred cytoprotection in the heart, we subjected hearts of wild-type (WT) mice and mice deficient in TLR2 (TLR2D), TLR4 (TLR4D), and TIR domain-containing adapter protein (TIRAP-D) to ischemic preconditioning (IPC). Langendorff-perfused hearts were subjected to 30 min ischemia and 60 min reperfusion with or without IPC. IPC resulted in a significant increase ( P < 0.05) in the percent recovery of left ventricular developed pressure (%LVDP) in WT mouse hearts (54.4 ± 2.7% of baseline), whereas there was no significant increase in %LVDP ( P > 0.05) in TIRAP-D mouse hearts (43.8 ± 1.9%) after I/R injury. IPC also resulted in a significant ( P < 0.05) decrease in I/R-induced creatine kinase release and Evans blue dye uptake in WT but not TIRAP-D hearts. Interestingly, IPC resulted in a significant ( P < 0.05) increase in %LVDP in TLR4-deficient hearts (52.7 ± 3%) but not in TLR2D hearts (39.3 ± 1.5%). Pretreatment with a specific TLR2 ligand (Pam3CSK) protected WT hearts against I/R-induced left ventricular dysfunction. The loss of IPC-induced cardioprotection in TIRAP-D mouse hearts was accompanied by a decreased translocation of protein kinase C-ε and decreased phosphorylation of GSK-3β. Taken together, these data suggest that the cardioprotective effect of IPC is mediated, at least in part, through a TLR2-TIRAP-dependent pathway, suggesting that the modulation of this pathway represents a viable target for reducing I/R injury.

2009 ◽  
Vol 297 (6) ◽  
pp. H2035-H2043 ◽  
Author(s):  
Sophie Tamareille ◽  
Nehmat Ghaboura ◽  
Frederic Treguer ◽  
Dalia Khachman ◽  
Anne Croué ◽  
...  

Ischemic postconditioning (IPost) and erythropoietin (EPO) have been shown to attenuate myocardial reperfusion injury using similar signaling pathways. The aim of this study was to examine whether EPO is as effective as IPost in decreasing postischemic myocardial injury in both Langendorff-isolated-heart and in vivo ischemia-reperfusion rat models. Rat hearts were subjected to 25 min ischemia, followed by 30 min or 2 h of reperfusion in the isolated-heart study. Rats underwent 45 min ischemia, followed by 24 h of reperfusion in the in vivo study. In both studies, the control group ( n = 12; ischemia-reperfusion only) was compared with IPost ( n = 16; 3 cycles of 10 s reperfusion/10 s ischemia) and EPO ( n = 12; 1,000 IU/kg) at the onset of reperfusion. The following resulted. First, in the isolated hearts, IPost or EPO significantly improved postischemic recovery of left ventricular developed pressure. EPO induced better left ventricular developed pressure than IPost at 30 min of reperfusion (73.18 ± 10.23 vs. 48.11 ± 7.92 mmHg, P < 0.05). After 2 h of reperfusion, the infarct size was significantly lower in EPO-treated hearts compared with IPost and control hearts (14.36 ± 0.60%, 19.11 ± 0.84%, and 36.21 ± 4.20% of the left ventricle, respectively; P < 0.05). GSK-3β phosphorylation, at 30 min of reperfusion, was significantly higher with EPO compared with IPost hearts. Phosphatidylinositol 3-kinase and ERK1/2 inhibitors abolished both EPO- and IPost-mediated cardioprotection. Second, in vivo, IPost and EPO induced an infarct size reduction compared with control (40.5 ± 3.6% and 28.9 ± 3.1%, respectively, vs. 53.7 ± 4.3% of the area at risk; P < 0.05). Again, EPO decreased significantly more infarct size and transmurality than IPost ( P < 0.05). In conclusion, with the use of our protocols, EPO showed better protective effects than IPost against reperfusion injury through higher phosphorylation of GSK-3β.


2010 ◽  
Vol 298 (5) ◽  
pp. H1529-H1536 ◽  
Author(s):  
Aaron M. Abarbanell ◽  
Yue Wang ◽  
Jeremy L. Herrmann ◽  
Brent R. Weil ◽  
Jeffrey A. Poynter ◽  
...  

Toll-like receptor 2 (TLR2), a key component of the innate immune system, is linked to inflammation and myocardial dysfunction after ischemia-reperfusion injury (I/R). Treatment of the heart with mesenchymal stem cells (MSCs) is known to improve myocardial recovery after I/R in part by paracrine factors such as VEGF. However, it is unknown whether TLR2 activation on the MSCs affects MSC-mediated myocardial recovery and VEGF production. We hypothesized that the knockout of TLR2 on the MSCs (TLR2KO MSCs) would 1) improve MSC-mediated myocardial recovery and 2) increase myocardial and MSC VEGF release. With the isolated heart perfusion system, Sprague-Dawley rat hearts were subjected to I/R and received one of three intracoronary treatments: vehicle, male wild-type MSCs (MWT MSCs), or TL2KO MSCs. All treatments were performed immediately before ischemia, and heart function was measured continuously. Postreperfusion, heart homogenates were analyzed for myocardial VEGF production. Contrary to our hypothesis, only MWT MSC treatment significantly improved the recovery of left ventricular developed pressure and the maximal positive and negative values of the first derivative of pressure. In addition, VEGF production was greatest in hearts treated with MWT MSCs. To investigate MSC production of VEGF, MSCs were activated with TNF in vitro and the supernatants collected for ELISA. In vitro basal levels of MSC VEGF production were similar. However, with TNF activation, MWT MSCs produced significantly more VEGF, whereas activated TLR2KO MSC production of VEGF was unchanged. Finally, we observed that MWT MSCs proliferated more rapidly than TLR2KO MSCs. These data indicate that TLR2 may be essential to MSC-mediated myocardial recovery and VEGF production.


2007 ◽  
Vol 292 (1) ◽  
pp. H503-H509 ◽  
Author(s):  
Yasushi Sakata ◽  
Jian-Wen Dong ◽  
Jesus G. Vallejo ◽  
Chien-Hua Huang ◽  
J. Scott Baker ◽  
...  

Production of proinflammatory cytokines contributes to cardiac dysfunction during ischemia-reperfusion. The principal mechanism responsible for the induction of this innate stress response during periods of myocardial ischemia-reperfusion remains unknown. Toll-like receptor 2 (TLR2) is a highly conserved pattern recognition receptor that has been implicated in the innate immune response to a variety of pathogens. However, TLR2 may also mediate inflammation in response to noninfectious injury. We therefore hypothesized that TLR2 is essential for modulating myocardial inflammation and left ventricular (LV) function during ischemia-reperfusion injury. Susceptibility to myocardial ischemia-reperfusion injury following ischemia-reperfusion was determined in Langendorff-perfused hearts isolated from wild-type mice and mice deficient in TLR2 (TLR2D) and Toll interleukin receptor domain-containing adaptor protein. After ischemia-reperfusion, contractile performance was significantly impaired in hearts from wild-type mice as demonstrated by a lower recovery of LV developed pressure relative to TLR2D hearts. Creatinine kinase levels were similar in both groups after reperfusion. Contractile dysfunction in wild-type hearts was associated with elevated cardiac levels of TNF and IL-1β. Ischemia-reperfusion-induced LV dysfunction was reversed by treatment with the recombinant TNF blocking protein etanercept. These studies show for the first time that TLR2 signaling importantly contributes to the LV dysfunction that occurs following ischemia-reperfusion. Thus disruption of TLR2-mediated signaling may be helpful to induce immediate or delayed myocardial protection from ischemia-reperfusion injury.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Dan Shao ◽  
Peiyong Zhai ◽  
Junichi Sadoshima

Lats2 is a tumor suppressor and a serine/threonine kinase, acting downstream of mammalian sterile 20 like kinase1 (Mst1), which stimulates apoptosis and inhibits hypertrophy in cardiomyocytes (CM). We investigated the role of Lats2 in mediating myocardial injury after ischemia/reperfusion (IR). Phosphorylation of YAP, an in vivo substrate of Lats2, was increased after 45 minutes ischemia followed by 24 hours reperfusion in control mouse hearts compared with sham, but not in dominant negative (DN) Lats2 transgenic mouse (Tg) hearts, suggesting that Lats2 is activated by IR. The size of myocardial infarction (MI)/area at risk was significantly smaller in Tg mice than in NTg mice (19% and 49%, p<0.01). And there were fewer TUNEL positive cells in Tg than in NTg mice (0.04% and 0.11%, p<0.05). Following 30 min of global ischemia and 60 min of reperfusion in Langendorff perfused heart preparations, left ventricular (LV) systolic pressure (100 vs 71mmHg, p<0.05) and LV developed pressure (79 vs 47 mmHg, p<0.05) were significantly greater in Tg than in NTg mice, indicating that suppression of Lats2 induces better functional recovery after IR. Oxidative stress, as evaluated by 8-OHdG staining, was attenuated in Tg mice. In cultured CMs, DN-Lats2 significantly decreased H 2 O 2 -induced cell death. Overexpression of Lats2 significantly downregulated (51% and 75%, p<0.05), whereas that of DN-Last2 upregulated (100 and 70%, p<0.05), MnSOD and catalase, suggesting that Lats2 negatively regulates expression of antioxidants. Reporter gene assays showed that overexpression of Lats2 significantly inhibits (−70%), whereas knocking down Lats2 by sh-Lats2 increases (+60%), FoxO3-mediated transcriptional activity. Overexpression of Lats2 in CMs inhibited FoxO3 expression, whereas that of DN-Lats2 significantly inhibited FoxO3 downregulation after IR in vivo, suggesting that Lats2 negatively regulates FoxO3 protein expression, which may lead to the downregulation of MnSOD and catalase. Taken together, these results suggest that endogenous Lats2 plays an important role in mediating myocardial injury in response to IR, In part through downregulation of FoxO3 and consequent downregulation of antioxidants and increased oxidative stress in the heart.


1991 ◽  
Vol 71 (4) ◽  
pp. 1518-1522 ◽  
Author(s):  
J. A. Leipala ◽  
R. Bhatnagar ◽  
E. Pineda ◽  
S. Najibi ◽  
K. Massoumi ◽  
...  

The effects of L-propionylcarnitine on mechanical function, creatine phosphate and ATP content, and lactate dehydrogenase leakage were studied in isolated perfused rat hearts exposed to global no-flow ischemia for 30 min followed by reperfusion for 20 min. Five and 10 mM L-propionylcarnitine resulted in a 100% recovery of left ventricular-developed pressure, whereas the recovery was only 40% in the hearts perfused without this agent. Ischemia-reperfusion caused a 85% loss of creatine phosphate and a 77% loss of ATP, which was prevented by 10 mM L-propionylcarnitine. Five millimolar L-propionylcarnitine protected the heart from the loss of creatine phosphate but not from the loss of ATP. Ten millimolar L-propionylcarnitine failed to improve the postischemic left ventricular-developed pressure, when it was added to the perfusate only after ischemia. L-propionylcarnitine alleviated the decrease of coronary flow in the reperfused hearts. Lactate dehydrogenase leakage was aggravated in the beginning of the reperfusion period by 10 mM L-propionylcarnitine. This adverse effect was, however, transient. L-Propionylcarnitine provides protection for the postischemic reperfused heart in a dose-dependent manner. The optimal time for administration is before the ischemic insult. High doses of this compound may perturb cell membrane integrity. Moreover, the present data point to an intracellular, metabolic, and perhaps anaplerotic mechanism of action of L-propionylcarnitine in cardiac ischemia-reperfusion injury.


2009 ◽  
Vol 10 (3) ◽  
pp. 211
Author(s):  
Yong Sook Kim ◽  
Jin Sook Kwon ◽  
Moon Hwa Hong ◽  
Ae Sin Jo ◽  
Sun Mi Shin ◽  
...  

2000 ◽  
Vol 279 (4) ◽  
pp. H1453-H1459 ◽  
Author(s):  
Lindon H. Young ◽  
Yasuhiko Ikeda ◽  
Rosario Scalia ◽  
Allan M. Lefer

Ischemia followed by reperfusion in the presence of polymorphonuclear leukocytes (PMNs) results in cardiac dysfunction. C-peptide, a cleavage product of proinsulin to insulin processing, induces nitric oxide (NO)-mediated vasodilation. NO is reported to attenuate cardiac dysfunction caused by PMNs after ischemia-reperfusion (I/R). Therefore, we hypothesized that C-peptide could attenuate PMN-induced cardiac dysfunction. We examined the effects of C-peptide in isolated ischemic (20 min) and reperfused (45 min) rat hearts perfused with PMNs. C-peptide (70 nmol/kg iv) given 4 or 24 h before I/R significantly improved coronary flow ( P < 0.05), left ventricular developed pressure (LVDP) ( P < 0.01), and the maximal rate of development of LVDP (+dP/d t max) compared with I/R hearts obtained from rats given 0.9% NaCl ( P < 0.01). N G-nitro-l-arginine methyl ester (l-NAME) (50 μmol/l) blocked these cardioprotective effects. In addition, C-peptide significantly reduced cardiac PMN infiltration from 183 ± 24 PMNs/mm2 in untreated hearts to 44 ± 10 and 58 ± 25 PMNs/mm2 in hearts from 4- and 24-h C-peptide-treated rats, respectively. Rat PMN adherence to rat superior mesenteric artery exposed to 2 U/ml thrombin was significantly reduced in rats given C-peptide compared with rats given 0.9% NaCl ( P < 0.001). Moreover, C-peptide enhanced basal NO release from rat aortic segments. These results provide evidence that C-peptide can significantly attenuate PMN-induced cardiac contractile dysfunction in the isolated perfused rat heart subjected to I/R at least in part via enhanced NO release.


2001 ◽  
Vol 91 (4) ◽  
pp. 1545-1554 ◽  
Author(s):  
Korinne N. Jew ◽  
Russell L. Moore

In this study, we sought to determine whether there was any evidence for the idea that cardiac ATP-sensitive K+ (KATP) channels play a role in the training-induced increase in the resistance of the heart to ischemia-reperfusion (I/R) injury. To do so, the effects of training and an KATP channel blocker, glibenclamide (Glib), on the recovery of left ventricular (LV) contractile function after 45 min of ischemia and 45 min of reperfusion were examined. Female Sprague-Dawley rats were sedentary (Sed; n = 18) or were trained (Tr; n = 17) for >20 wk by treadmill running, and the hearts from these animals used in a Langendorff-perfused isovolumic LV preparation to assess contractile function. A significant increase in the amount of 72-kDa class of heat shock protein was observed in hearts isolated from Tr rats. The I/R protocol elicited significant and substantial decrements in LV developed pressure (LVDP), minimum pressure (MP), rate of pressure development, and rate of pressure decline and elevations in myocardial Ca2+ content in both Sed and Tr hearts. In addition, I/R elicited a significant increase in LV diastolic stiffness in Sed, but not Tr, hearts. When administered in the perfusate, Glib (1 μM) elicited a normalization of all indexes of LV contractile function and reductions in myocardial Ca2+content in both Sed and Tr hearts. Training increased the functional sensitivity of the heart to Glib because LVDP and MP values normalized more quickly with Glib treatment in the Tr than the Sed group. The increased sensitivity of Tr hearts to Glib is a novel finding that may implicate a role for cardiac KATP channels in the training-induced protection of the heart from I/R injury.


Sign in / Sign up

Export Citation Format

Share Document