scholarly journals The effects of hypertension on the cerebral circulation

2013 ◽  
Vol 304 (12) ◽  
pp. H1598-H1614 ◽  
Author(s):  
Paulo W. Pires ◽  
Carla M. Dams Ramos ◽  
Nusrat Matin ◽  
Anne M. Dorrance

Maintenance of brain function depends on a constant blood supply. Deficits in cerebral blood flow are linked to cognitive decline, and they have detrimental effects on the outcome of ischemia. Hypertension causes alterations in cerebral artery structure and function that can impair blood flow, particularly during an ischemic insult or during periods of low arterial pressure. This review will focus on the historical discoveries, novel developments, and knowledge gaps in 1) hypertensive cerebral artery remodeling, 2) vascular function with emphasis on myogenic reactivity and endothelium-dependent dilation, and 3) blood-brain barrier function. Hypertensive artery remodeling results in reduction in the lumen diameter and an increase in the wall-to-lumen ratio in most cerebral arteries; this is linked to reduced blood flow postischemia and increased ischemic damage. Many factors that are increased in hypertension stimulate remodeling; these include the renin-angiotensin-aldosterone system and reactive oxygen species levels. Endothelial function, vital for endothelium-mediated dilation and regulation of myogenic reactivity, is impaired in hypertension. This is a consequence of alterations in vasodilator mechanisms involving nitric oxide, epoxyeicosatrienoic acids, and ion channels, including calcium-activated potassium channels and transient receptor potential vanilloid channel 4. Hypertension causes blood-brain barrier breakdown by mechanisms involving inflammation, oxidative stress, and vasoactive circulating molecules. This exposes neurons to cytotoxic molecules, leading to neuronal loss, cognitive decline, and impaired recovery from ischemia. As the population ages and the incidence of hypertension, stroke, and dementia increases, it is imperative that we gain a better understanding of the control of cerebral artery function in health and disease.

Sci ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 16
Author(s):  
James David Adams

A three-part mechanism is proposed for the induction of Alzheimer’s disease: (1) decreased blood lactic acid; (2) increased blood ceramide and adipokines; (3) decreased blood folic acid. The age-related nature of these mechanisms comes from age-associated decreased muscle mass, increased visceral fat and changes in diet. This mechanism also explains why many people do not develop Alzheimer’s disease. Simple changes in lifestyle and diet can prevent Alzheimer’s disease. Alzheimer’s disease is caused by a cascade of events that culminates in damage to the blood–brain barrier and damage to neurons. The blood–brain barrier keeps toxic molecules out of the brain and retains essential molecules in the brain. Lactic acid is a nutrient to the brain and is produced by exercise. Damage to endothelial cells and pericytes by inadequate lactic acid leads to blood–brain barrier damage and brain damage. Inadequate folate intake and oxidative stress induced by activation of transient receptor potential cation channels and endothelial nitric oxide synthase damage the blood–brain barrier. NAD depletion due to inadequate intake of nicotinamide and alterations in the kynurenine pathway damages neurons. Changes in microRNA levels may be the terminal events that cause neuronal death leading to Alzheimer’s disease. A new mechanism of Alzheimer’s disease induction is presented involving lactic acid, ceramide, IL-1β, tumor necrosis factor α, folate, nicotinamide, kynurenine metabolites and microRNA.


Nature ◽  
2020 ◽  
Vol 581 (7806) ◽  
pp. 71-76 ◽  
Author(s):  
Axel Montagne ◽  
Daniel A. Nation ◽  
Abhay P. Sagare ◽  
Giuseppe Barisano ◽  
Melanie D. Sweeney ◽  
...  

1996 ◽  
Vol 18 (1) ◽  
pp. 83-86 ◽  
Author(s):  
Hiroki Namba ◽  
Toshiaki Irie ◽  
Kiyoshi Fukushi ◽  
Masaomi lyo ◽  
Takahiro Hashimoto ◽  
...  

2018 ◽  
Vol 14 (12) ◽  
pp. 1640-1650 ◽  
Author(s):  
Gene L. Bowman ◽  
Loïc Dayon ◽  
Richard Kirkland ◽  
Jérôme Wojcik ◽  
Gwendoline Peyratout ◽  
...  

1981 ◽  
Vol 1 (3) ◽  
pp. 349-356 ◽  
Author(s):  
A. M. Harper ◽  
L. Craigen ◽  
S. Kazda

The effect of the calcium antagonist nimodipine was tested in anaesthetised primates. A rapid intravenous injection of 3 or 10 μg kg−1 produced a transient rise in end-tidal Pco2 and a fall in arterial blood pressure, but 10 min after the injection there was no significant change in CBF. A continuous intravenous infusion of 2 μg kg−1 min−1 caused a modest fall in mean arterial blood pressure and an increase in cerebral blood flow (CBF), which gradually increased to 27% above control after 50 min infusion. There was no significant change in CMRO2. A continuous intracarotid infusion of 0.67 μg kg−1 min−1 caused an increase in CBF of between 46 and 57%. This was further increased to 87% above control after disruption of the blood-brain barrier with hyperosmolar urea. Thirty minutes after the urea, the CBF returned to 43% above control. Twenty minutes after the infusion of nimodipine had been stopped, the CBF had returned to control values. EEG studies in this group showed no obvious increase in electrocortical activity. This evidence suggests that nimodipine has no effect on cerebral metabolism but increases CBF, particularly after disruption of the blood-brain barrier.


Sign in / Sign up

Export Citation Format

Share Document