scholarly journals Inhaled NO inhibits platelet aggregation and elevates plasma but not intraplatelet cGMP in healthy human volunteers

2003 ◽  
Vol 285 (2) ◽  
pp. H637-H642 ◽  
Author(s):  
Maurice Beghetti ◽  
Catherine Sparling ◽  
Peter N. Cox ◽  
Derek Stephens ◽  
Ian Adatia

Effects of inhaled nitric oxide (NO) on human platelet function are controversial. It is uncertain whether intraplatelet cGMP mediates the effect of inhaled NO on platelet function. We investigated the effect of 30 ppm inhaled NO on platelet aggregation and plasma and intraplatelet cGMP in 12 subjects. We performed platelet aggregation studies by using a photooptical aggregometer and five agonists (ADP, collagen, epinephrine, arachidonic acid, and ristocetin). During inhalation, the maximal extent of platelet aggregation decreased by 75% with epinephrine ( P < 0.005), 56% with collagen ( P < 0.005), and 20% with arachidonic acid ( P < 0.05). Responses to ADP (8% P > 0.05) and ristocetin (5% P > 0.05) were unaffected. Platelet aggregation velocity decreased by 64% with collagen ( P < 0.005), 60% with epinephrine ( P < 0.05), 33% with arachidonic acid ( P < 0.05), and 14% with ADP ( P > 0.05). Plasma cGMP levels increased from 2.58 ± 0.43 to 9.99 ± 5.57 pmol/ml ( P < 0.005), intraplatelet cGMP levels were unchanged (means ± SD: 1.96 ± 0.58 vs. 2.71 ± 1.67 pmol/109platelets; P > 0.05). Inhaled NO inhibits platelet aggregation via a cGMP independent mechanism.

1981 ◽  
Author(s):  
R McKenna ◽  
T Ahmad ◽  
A Prancan ◽  
D Simon ◽  
H Frischer

We have previously shown that BCNU inhibits human platelet glutathione reductase (GSSG-R) prior to inhibiting platelet function; since thromboxane production is important in platelet function, we evaluated the effect of BCNU induced inhibition of GSSG-R on platelet thromboxane production.Control platelet GSSG-R activity was 0.091 ]jmoles NAD(P)H oxidized min-1lmg-1 protein at 37°C (±0.015 S.D.; n=9); inhibition was detectable at 10-7M% BCNU (70% of control) with a >90% inhibition at and above 10-5M BCNU. Platelet aggregation in response to 1.5×10-3M Arachidonic acid (AA), 10 μM epinephrine, 6 μg/ml equine collagen and 3 μM ADP were inhibited at 10-5M BCNU and abolished at 10-4 BCNU.BCNU (10-3M) did not affect the increase in oxygen consumption induced by AA. Using the rabbit aorta superfusion bioassay for thromboxane A2 (TXA2), threshold concentrations of AA in 10-5 and 10-4 BCNU platelets resulted in an increased measure of aortic tension 13.5 ± 9.4 mm S.D. (n=6) and 23.2 ± 9.5 mm respectively, compared with control values of 4.5 ± 2.4. Acetylsalicylic acid (5 × l0-4M) inhibited the contraction: 1.7 ± 1.1 (n=5). The conversion of 14C AA to thromboxane B2 (TXB2) and PGE2, as measured by radio TLC, was not decreased in BCNU treated platelets. There is a significant increase in TXB2 (p<0.05;n=4) and in the ratio of TXB2:PGE2 in platelets treated with 10-4M BCNU and 10-3M imidazole when compared to platelets treated with imidazole alone.In conclusion BCNU induced inhibition of platelet GSSG-R and platelet function occurs despite preservation of thromboxane production


1981 ◽  
Vol 46 (02) ◽  
pp. 538-542 ◽  
Author(s):  
R Pilo ◽  
D Aharony ◽  
A Raz

SummaryThe role of arachidonic acid oxygenated products in human platelet aggregation induced by the ionophore A23187 was investigated. The ionophore produced an increased release of both saturated and unsaturated fatty acids and a concomitant increased formation of TxA2 and other arachidonate products. TxA2 (and possibly other cyclo oxygenase products) appears to have a significant role in ionophore-induced aggregation only when low concentrations (<1 μM) of the ionophore are employed.Testosterone added to rat or human platelet-rich plasma (PRP) was shown previously to potentiate platelet aggregation induced by ADP, adrenaline, collagen and arachidonic acid (1, 2). We show that testosterone also potentiates ionophore induced aggregation in washed platelets and in PRP. This potentiation was dose and time dependent and resulted from increased lipolysis and concomitant generation of TxA2 and other prostaglandin products. The testosterone potentiating effect was abolished by preincubation of the platelets with indomethacin.


1994 ◽  
Vol 267 (1) ◽  
pp. H308-H318 ◽  
Author(s):  
G. Ambrosio ◽  
P. Golino ◽  
I. Pascucci ◽  
M. Rosolowsky ◽  
W. B. Campbell ◽  
...  

Reactive oxygen metabolites have been reported to affect platelet aggregation. However, this phenomenon is still poorly understood. In the present study we investigated the effects of superoxide radical and hydrogen peroxide (H2O2) on platelet function in vitro and correlated those effects to possible changes of platelet concentrations of cyclic nucleotides and thromboxane, since these systems play a key role in the response of platelets to activating stimuli. Human platelets were exposed to xanthine-xanthine oxidase (X-XO), a system that generates both superoxide radicals and H2O2. Sixty seconds of incubation with X-XO impaired aggregation in response to ADP (by 48%), collagen (by 71%), or the thromboxane mimetic U-46619 (by 50%). This effect was reversible and occurred in the absence of cell damage. Impairment of aggregation in platelets exposed to X-XO was due to H2O2 formation, since it was prevented by catalase but not by superoxide dismutase. Similarly, incubation with the pure H2O2 generator glucose-glucose oxidase also markedly inhibited ADP-induced platelet aggregation in a dose-dependent fashion. Impaired aggregation by H2O2 was accompanied by a > 10-fold increase in platelet concentrations of guanosine 3',5'-cyclic monophosphate (cGMP), whereas adenosine 3',5'-cyclic monophosphate levels remained unchanged. The inhibitory role of increased cGMP formation was confirmed by the finding that H2O2-induced impairment of platelet aggregation was largely abolished when guanylate cyclase activation was prevented by incubating platelets with the guanylate cyclase inhibitor, LY-83583. Different effects were observed when arachidonic acid was used to stimulate platelets. Exposure to a source of H2O2 did not affect aggregation to arachidonate. Furthermore, in the absence of exogenous H2O2, incubation with catalase, which had no effects on platelet response to ADP, collagen, or U-46619, virtually abolished platelet aggregation and markedly reduced thromboxane B2 production (to 44% of control) when arachidonic acid was used as a stimulus. In conclusion, our data demonstrate that H2O2 may exert complex effects on platelet function in vitro. Low levels of endogenous H2O2 seem to be required to promote thromboxane synthesis and aggregation in response to arachidonic acid. In contrast, exposure to larger (but not toxic) concentrations of exogenous H2O2 may inhibit aggregation to several agonists via stimulation of guanylate cyclase and increased cGMP formation.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Andrew L Frelinger ◽  
Youfu Li ◽  
Matthew D Linden ◽  
Inge Tarnow ◽  
Marc R Barnard ◽  
...  

Background: Aspirin “resistance” (i.e. hyporesponsiveness to aspirin in a platelet function test) has been widely reported, but the underlying mechanism is unclear. We examined the role of pre-existent platelet hyperreactivity in aspirin “resistance”. We also determined the correlation between aspirin resistance defined by serum thromboxane (TX) B 2 (the most specific test of aspirin’s effect) and other assays of platelet function. Methods: Platelet function measured before and after aspirin 81 mg daily for 7 days was analyzed by Spearman’s rank correlation. Normal subjects (n=165) were studied because virtually all clinically relevant patients are already taking aspirin. An additional advantage of the use of normal subjects is that the platelet response to stimuli is not influenced (with resultant increased scatter of the data) by an underlying disease, e.g. coronary artery disease, which causes platelet hyperreactivity. Results: The proportion of the post-aspirin platelet function predicted by the pre-aspirin platelet function was 28.3 ± 7.5% (mean ± asymptotic standard error) for serum TXB 2 , 39.3 ± 6.8% for urinary 11-dehydro TXB 2 , 4.4 ± 7.7% for arachidonic acid-induced platelet aggregation, 40.4 ± 7.1% for ADP-induced platelet aggregation, 26.3 ± 9.2% for the VerifyNow Aspirin Assay®, and 45.0 ± 10.9% for the TEG® PlateletMapping ™ System with arachidonic acid. Spearman rank order correlations were highly significant for comparisons between assays when both pre-aspirin and post-aspirin results were included in the analysis. However, residual serum TXB 2 levels post-aspirin treatment were not significantly associated with post-treatment results of any of the other assays. Platelet count correlated with pre-aspirin serum TXB 2 and VerifyNow Aspirin Assay, but not with any post-aspirin platelet function test. Conclusions: Aspirin “resistance” (i.e. hyporesponsiveness to aspirin in a laboratory test) is in part unrelated to aspirin but is the result of underlying platelet hyperreactivity prior to the institution of aspirin therapy. Individuals identified as aspirin “resistant” defined by serum TXB 2 are not the same individuals identified by the other tests.


2009 ◽  
Vol 102 (1) ◽  
pp. 38-46 ◽  
Author(s):  
A. Snapir ◽  
P. Talke ◽  
J. Posti ◽  
M. Huiku ◽  
E. Kentala ◽  
...  

1981 ◽  
Author(s):  
B A Killackey ◽  
J J Killackey ◽  
R B Philp

The effects of a series of benzoic acid derivatives (ASA analogs) on prostacyclin (PGI2) synthesis by rabbit aorta rings and on human platelet function were examined to determine if antiplatelet activity could be separated from anti-PGI2 activity.Rings of rabbit aorta were incubated with or without drugs in Tris 0.05 M, pH 7.5 for 6 m at room temperature (R.T.). Supernatant was then transferred to platelet-rich plasma incubated at 37°C for 3 m. ADP was added 60 s later and aggregation was measured and compared to controls. Rings were also incubated with 14C-arachidonic acid (14C-AA) for 60 m at R.T. in Tris with or without drugs. Products were extracted and measured by radio-T.L.C. along with known standards. Platelet aggregation and release of ATP were measured using a ChronoLog Lumi aggregometer. The effects of these agents on PGI2 activity were similar to their effects on platelet aggregation. ASA however did not exhibit the marked inhibitory potency that it had on the second phase of platelet aggregation and ATP release. Changing the 2-acetoxy group of A.S.A. to a 2-acetyl or 3-propionyloxy resulted in a loss of inhibitory activity in both systems. 2-Propionyloxy substitution resulted in a similar spectrum of activity to ASA. The effects of these agents on the metabolism of 14C-AA by rabbit aorta rings generally confirmed the bioassay results although some of the agents had novel effects on blood vessel arachidonic acid metabolism.Despite potential species differences, this study demonstrates an inability to separate antiplatelet and anti-PGI2 effects with this series of benzoic acid derivatives. Further study of the effects of these agents on the metabolism of 14C-AA by rings of rabbit aorta may lead to a better understanding of PGI2 formation.


1980 ◽  
Vol 238 (1) ◽  
pp. H54-H60 ◽  
Author(s):  
E. Kornecki ◽  
H. Feinberg

The effect of pyridoxal phosphate (PLP) on human platelet function in vitro was studied. PLP inhibited adenosine diphosphate (ADP)-induced shape change, aggregation, and the potentiation by ADP of arachidonic acid-induced aggregation. This inhibition could easily be reversed by increasing concentrations of ADP or by removing PLP. The addition of sodium borohydride to PLP-treated platelets produced an irreversible inhibition of ADP aggregation. Thus it is possible that PLP inhibited ADP-induced platelet function by forming a Schiff base with platelet-surface amino groups. PLP also produced a partial inhibition of platelet aggregation to epinephrine, arachidonic acid, A23187, and a dose-dependent inhibition of [14C]serotonin release to epinephrine and arachidonic acid. PLP did not inhibit [14C]serotonin release to A23187, nor did it suppress arachidonic acid-induced malondialdehyde production. The conclusion is drawn that the partial inhibition by PLP of platelet aggregation observed to epinephrine, arachidonic acid, and A23187 resulted from PLP's inhibition of the effect of released ADP.


1981 ◽  
Author(s):  
M Cattaneo ◽  
R L Kinlough-Rathbone ◽  
J F Mustard

In contrast to other release-inducing agents (e.g. thrombin) arachidonic acid (AA) releases only 40-50% of amine storage granule contents and although low concentrations induce aggregation, high concentrations do not. Several theories have been proposed to explain these observations: 1) AA or its products inactivates the cyclo-oxygenase; 2) the products of AA increase platelet cAMP; 3) lipoxygenase products are inhibitory; 4) unsaturated fatty acids (UFA) perturb the cell membrane. Using washed rabbit platelets we examined the effect of AA on platelet function. In these experiments aspirin-treated platelets (ASA 5.5 mM) were exposed to AA (230 μM) for 15 min. and then to PGEj (10 μM) for 30 min. The platelets were then resuspended. These platelets did not aggregate to ADP (9 μM) and their response to thrombin (0.02-0.05 U/ml) was impaired in contrast to control, ASA-treated platelets not exposed to AA. Non-ASA-treated platelets exposed to AA (230 μM), deaggre- gated with PGE1, and then resuspended also did not aggregate in response to ADP (9 μM) collagen, AA (230 μM) or thrombin (0.02-0.05 U/ml). When platelets pretreated with ASA and AA were mixed 1:1 with normal platelets and the mixture stimulated with AA (230 μM), the AA-treated platelets did not release their granule contents whereas the normal platelets did. These results do not support the hypothesis- that the inhibitory effect of AA on platelet aggregation and release is primarily due to inhibition of cyclo-oxygenase or an increase in cAMP caused by AA products. It seems unlikely that inhibition by AA can be due to products of the lipoxygenase pathway, because the effect persists when the platelets are washed and resuspended. Similar results were obtained by incubating platelets with linoleic acid (230 μM). This evidence is compatible with the hypothesis that UFA can inhibit platelet function by perturbing the cell membrane. This effect may be related to changes in receptor availability.


Sign in / Sign up

Export Citation Format

Share Document