Interaction of myogenic mechanisms and hypoxic dilation in rat middle cerebral arteries

2002 ◽  
Vol 283 (6) ◽  
pp. H2276-H2281 ◽  
Author(s):  
Yanping Liu ◽  
David R. Harder ◽  
Julian H. Lombard

The goal of this study was to determine how myogenic responses and vascular responses to reduced Po 2 interact to determine vascular smooth muscle (VSM) transmembrane potential and active tone in isolated middle cerebral arteries from Sprague-Dawley rats. Stepwise elevation of transmural pressure led to depolarization of the VSM cells and myogenic constriction, and reduction of the O2concentration of the perfusion and superfusion reservoirs from 21% O2 to 0% O2 caused vasodilation and VSM hyperpolarization. Myogenic constriction and VSM depolarization in response to transmural pressure elevation still occurred at reduced Po 2. Arterial dilation in response to reduced Po 2 was not impaired by pressure elevation but was significantly reduced at the lowest transmural pressure (60 mmHg). However, the magnitude of VSM hyperpolarization was unaffected by transmural pressure elevation. This study demonstrates that myogenic activation in response to transmural pressure elevation does not override hypoxic relaxation of middle cerebral arteries and that myogenic responses and hypoxic relaxation can independently regulate vessel diameter despite substantial changes in the other variable.

2001 ◽  
Vol 21 (10) ◽  
pp. 1223-1231 ◽  
Author(s):  
Panya S. Manoonkitiwongsa ◽  
Catherine Jackson-Friedman ◽  
Paul J. McMillan ◽  
Robert L. Schultz ◽  
Patrick D. Lyden

Brain cells manufacture and secrete angiogenic peptides after focal cerebral ischemia, but the purpose of this angiogenic response is unknown. Because the maximum possible regional cerebral blood flow is determined by the quantity of microvessels in each unit volume, it is possible that angiogenic peptides are secreted to generate new collateral channels; other possibilities include neuroprotection, recovery/regeneration, and removal of necrotic debris. If the brain attempts to create new collaterals, microvessel density should increase significantly after ischemia. Conversely, if angiogenic-signaling molecules serve some other purpose, microvessel densities may increase slightly or not at all. To clarify, the authors measured microvessel densities with quantitative morphometry. Left middle cerebral arteries of adult male Sprague–Dawley rats were occluded with intraluminal nylon suture for 4 hours followed by 7, 14, 19, or 30 days of reperfusion. Controls received no surgery or suture occlusion. Changes in microvessel density and macrophage numbers were measured by light microscopic morphometry using semiautomated stereologic methods. Microvessel density increased only in the ischemic margin adjacent to areas of pannecrosis and was always associated with increased numbers of macrophages. Ischemic brain areas without macrophages displayed no vascularity changes compared with normal animals. These data suggest that ischemia-induced microvessels are formed to facilitate macrophage infiltration and removal of necrotic brain.


Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Frederik B Hansen ◽  
Goncalo Esteves ◽  
Niels Secher ◽  
Bo Lofgren ◽  
Ulf Simonsen ◽  
...  

Introduction: Cardiac arrest (CA) has a poor prognosis due to brain injury that progresses over time. Endothelial dysfunction may play an important role in the impairment of the cerebral circulation after CA. Aims: To investigate 1) whether endothelial dysfunction is present in cerebral arteries, and 2) if the altered endothelial function is caused by increased activity of calcium-activated potassium (K ca ) channels. Methods: Male Sprague-Dawley rats (403g±24g) were anaesthetized, intubated and ventilated. Four groups were examined; two CA groups observed for either 2 hours (2h-CA, n=10) or 4 hours (4h-CA, n=10) and two corresponding sham groups (2h-sham, n=10; 4h-sham, n=10). Following 7 minutes of asphyxial CA, the rats were resuscitated using adrenaline, ventilation, and chest compressions. Middle cerebral arteries were isolated and examined in wire-myographs. Results: Cerebral vasodilation was significantly enhanced in response to bradykinin in arteries from 4h-CA rats when compared to 4h-sham rats (4h-sham: E max 58% (5.57 of 9.69) ± 6% vs 4h-CA: E max 84% (6.16 of 7.32) ± 4%, p=0.007). Likewise, vasodilation induced by NS309 (K Ca -channel activator) was increased in CA rats when compared to sham rats. In the presence of L-NAME (NO synthase inhibitor), bradykinin induced vasodilation was significantly augmented in 4h-CA rats when compared to 4h-sham rats, whereas SNP (NO donor) induced vasodilation was similar between groups. In the presence of L-NAME and K Ca -channel blockers (UCL1684 and ICA-17043), bradykinin induced vasodilation was abolished in cerebral arteries in all four groups. Conclusion: Our findings demonstrate an enhanced endothelial-dependent vasodilation in cerebral arteries in the post-cardiac arrest period. The increased vasodilatory response may be explained by increased endothelial K Ca -channel activity and bioavailability of NO, and may contribute to dysregulation of cerebral blood flow after CA.


Author(s):  
Ivana Jukic ◽  
Zrinka Mihaljevic ◽  
Anita Matic ◽  
Martina Mihalj ◽  
Natasa Kozina ◽  
...  

This study aimed to determine the mechanosensing role of angiotensin II type 1 receptor (AT1R) in flow-induced dilation (FID) and oxidative stress production in middle cerebral arteries (MCA) of Sprague-Dawley rats. Eleven-weeks old, healthy male Sprague-Dawley rats on a standard diet were given the AT1R blocker losartan (1 mg/mL) in drinking water (losartan group) or tap water (control group) ad libitum for 7 days. Blockade of AT1R attenuated FID and acetylcholine-induced dilations was compared to control group. Nitric oxide (NO) synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) and cyclooxygenase inhibitor indomethacin (INDO) significantly reduced FID in control group. The attenuated FID in losartan group was further reduced by INDO only at ∆100 mmHg, whereas L-NAME had no effect. In losartan group, TEMPOL (a superoxide scavenger) restored dilatation, while TEMPOL+L-NAME together significantly reduced FID compared to restored dilatation with TEMPOL alone. Direct fluorescence measurements of NO and reactive oxygen species (ROS) production in MCA, in no-flow conditions revealed significantly reduced vascular NO levels with AT1R blockade compared to control group, while flow increased the NO and ROS production in losartan group and had no effect in control group. In losartan group, TEMPOL decreased ROS production in both no-flow and flow conditions. AT1R blockade elicited increased serum concentrations of AngII, 8-iso-PGF2α, and TBARS, and decreased antioxidant enzyme activity (SOD and CAT). These results suggest that in small isolated cerebral arteries: 1) AT1 receptor maintains dilations in physiological conditions; 2) AT1R blockade leads to increased vascular and systemic oxidative stress, which underlies impaired FID.


1997 ◽  
Vol 273 (5) ◽  
pp. H2248-H2256 ◽  
Author(s):  
Peter Skarsgard ◽  
Cornelis Van Breemen ◽  
Ismail Laher

Second-order middle cerebral arteries (135.0 ± 4.6 μm ID) from male, female, ovariectomized female (no endogenous estrogen), and estrogen-treated ovariectomized female Sprague-Dawley rats were harvested and mounted in a pressure myograph. Myogenic response was recorded over a pressure range of 10–100 mmHg and was repeated in the presence of N ω-nitro-l-arginine methyl ester (l-NAME; 2 × 10−4 M), an inhibitor of nitric oxide (NO) synthase, and after endothelium removal, to examine the contribution of NO to net myogenic tone. With intact endothelium, there were no differences in myogenic tone between the groups, but in the presence of l-NAME and after endothelium removal, estrogen-exposed vessels developed significantly greater tone at high transmural pressure. There were no differences in sensitivity to sodium nitroprusside, an NO donor, or A-23187, a calcium ionophore. These results suggest an increase in basal release of NO in cerebral arteries exposed to estrogen, without change in NO sensitivity or maximally stimulated NO release.


2004 ◽  
Vol 286 (6) ◽  
pp. H2127-H2132 ◽  
Author(s):  
Marilyn J. Cipolla ◽  
Lisa Vitullo ◽  
John McKinnon

Eclampsia is thought to be similar to hypertensive encephalopathy, whereby acute elevations in intravascular pressure cause forced dilatation (FD) of intrinsic myogenic tone of cerebral arteries and arterioles, decreased cerebrovascular resistance, and hyperperfusion. In the present study, we tested the hypothesis that pregnancy and/or the postpartum period predispose cerebral arteries to FD by diminishing pressure-induced myogenic activity. We compared the reactivity to pressure (myogenic activity) as well as factors that modulate the level of tone of third-order branches (<200 μm) of the posterior cerebral artery (PCA) that were isolated from nonpregnant (NP, n = 7), late-pregnant (LP, 19 days, n = 10), and postpartum (PP, 3 days, n = 8) Sprague-Dawley rats under pressurized conditions. PCAs from all groups of animals developed spontaneous tone within the myogenic pressure range (50–150 mmHg) and constricted arteries at 100 mmHg (NP, 30 ± 3; LP, 39 ± 4; and PP, 42 ± 7%; P > 0.05). This level of myogenic activity was maintained in the NP arteries at all pressures; however, both LP and PP arteries dilated at considerably lower pressures compared with NP, which lowered the pressure at which FD occurred from >175 for NP to 146 ± 6.5 mmHg for LP ( P < 0.01 vs. NP) and 162 ± 7.7 mmHg for PP ( P < 0.01 vs. NP). The amount of myogenic tone was also significantly diminished at 175 mmHg compared with NP: percent tone for NP, LP, and PP animals were 35 ± 2, 11 ± 3 ( P < 0.01 vs. NP), and 20 ± 7% ( P < 0.01 vs. NP), respectively. Inhibition of nitric oxide (NO) with 0.1 mM Nω-nitro-l-arginine (l-NNA) caused constriction of all vessel types that was significantly increased in the PP arteries, which demonstrates significant basal NO production. Reactivity to 5-hydroxytryptamine (serotonin) was assessed in the presence of l-NNA and indomethacin. There was a differential response to serotonin: PCAs from NP animals dilated, whereas LP and PP arteries constricted. These results suggest that both pregnancy and the postpartum period predispose the cerebral circulation to FD at lower pressures, a response that may lower cerebrovascular resistance and promote hyperperfusion when blood pressure is elevated, as occurs during eclampsia.


2010 ◽  
Vol 299 (4) ◽  
pp. H1024-H1033 ◽  
Author(s):  
Matthew J. Durand ◽  
Gábor Raffai ◽  
Brian D. Weinberg ◽  
Julian H. Lombard

The goals of this study were to 1) determine the acute effect of ANG-(1-7) on vascular tone in isolated middle cerebral arteries (MCAs) from Sprague-Dawley rats fed a normal salt (NS; 0.4% NaCl) diet, 2) evaluate the ability of chronic intravenous infusion of ANG-(1-7) (4 ng·kg−1·min−1) for 3 days to restore endothelium-dependent dilation to acetylcholine (ACh) in rats fed a high-salt (HS; 4% NaCl) diet, and 3) determine whether the amelioration of endothelial dysfunction by ANG-(1-7) infusion in rats fed a HS diet is different from the protective effect of low-dose ANG II infusion in salt-fed rats. MCAs from rats fed a NS diet dilated in response to exogenous ANG-(1-7) (10−10–10−5 M). Chronic ANG-(1-7) infusion significantly reduced vascular superoxide levels and restored the nitric oxide-dependent dilation to ACh (10−10–10−5 M) that was lost in MCAs of rats fed a HS diet. Acute vasodilation to ANG-(1-7) and the restoration of ACh-induced dilation by chronic ANG-(1-7) infusion in rats fed a HS diet were blocked by the Mas receptor antagonist [d-ALA( 7 )]-ANG-(1-7) or the ANG II type 2 receptor antagonist PD-123319 and unaffected by ANG II type 1 receptor blockade with losartan. The restoration of ACh-induced dilation in MCAs of HS-fed rats by chronic intravenous infusion of ANG II (5 ng·kg−1·min−1) was blocked by losartan and unaffected by d-ALA. These findings demonstrate that circulating ANG-(1-7), working via the Mas receptor, restores endothelium-dependent vasodilation in cerebral resistance arteries of animals fed a HS diet via mechanisms distinct from those activated by low-dose ANG II infusion.


Sign in / Sign up

Export Citation Format

Share Document