Role of impaired myocardial relaxation in the production of elevated left ventricular filling pressure

2005 ◽  
Vol 288 (3) ◽  
pp. H1203-H1208 ◽  
Author(s):  
Ilan Hay ◽  
Jonathan Rich ◽  
Paul Ferber ◽  
Daniel Burkhoff ◽  
Mathew S. Maurer

Although present in many patients with heart failure and a normal ejection fraction, the role of isolated impairments in active myocardial relaxation in the genesis of elevated filling pressures is not well characterized. Because of difficulties in determining the effect of prolonged myocardial relaxation in vivo, we used a cardiovascular simulated computer model. The effect of myocardial relaxation, as assessed by τ (exponential time constant of relaxation), on pulmonary vein pressure (PVP) and left ventricular end-diastolic pressure (LVEDP) was investigated over a wide range of τ values (20–100 ms) and heart rate (60–140 beats/min) while keeping end-diastolic volume constant. Cardiac output was recorded over a wide range of τ and heart rate while keeping PVP constant. The effect of systolic intervals was investigated by changing time to end systole at the same heart rate. At a heart rate of 60 beats/min, increases in τ from a baseline to extreme value of 100 ms cause only a minor increase in PVP of 3 mmHg. In contrast, at 120 beats/min, the same increase in τ increases PVP by 23 mmHg. An increase in filling pressures at high heart rates was attributable to incomplete relaxation. The PVP-LVEDP gradient was not constant and increased with increasing τ and heart rate. Prolonged systolic intervals augmented the effects of τ on PVP. Impaired myocardial relaxation is an important determinant of PVP and cardiac output only during rapid heart rate and especially when combined with prolonged systolic intervals. These findings clarify the role of myocardial relaxation in the pathogenesis of elevated filling pressures characteristic of heart failure.

1994 ◽  
Vol 267 (2) ◽  
pp. H667-H677 ◽  
Author(s):  
P. D. Constable ◽  
W. W. Muir ◽  
P. F. Binkley

The inotropic effects of hypertonic saline (HS) and hyperosmotic dextrose (HD; 2,400 mosmol/l, 4 ml/kg) were determined in normovolumic, chloralose-anesthetized, intact (n = 14) and autonomically blocked (n = 8) dogs. Solutions were infused intravenously over 3 min. HS and HD rapidly increased preload in both intact and autonomically blocked dogs, as assessed by significant (P < 0.05) increases in plasma volume, end-diastolic volume, and end-diastolic pressure. In intact dogs, HS produced a nonsignificant decrease in end-systolic elastance (Ees) and a nonsignificant increase in the maximal rate of change of left ventricular pressure (dP/dtmax) and cardiac output, whereas HD produced a significant increase in Ees, dP/dtmax, and cardiac output. In autonomically blocked dogs, HS significantly decreased Ees and significantly increased dP/dtmax but did not alter cardiac output, whereas HD significantly increased Ees, dP/dtmax, and cardiac output. We conclude that in normovolumic animals, HS is a negative inotropic agent, HD is a positive inotropic agent, and the in vivo effect of an ionic hyperosmotic agent (HS) differs from that of a nonionic hyperosmotic agent (HD).


2003 ◽  
Vol 81 (2) ◽  
pp. 125-128 ◽  
Author(s):  
Ghada S Hassan ◽  
Fazila Chouiali ◽  
Takayuki Saito ◽  
Fu Hu ◽  
Stephen A Douglas ◽  
...  

Recent studies have shown that the vasoactive peptide urotensin-II (U-II) exerts a wide range of action on the cardiovascular system of various species. In the present study, we determined the in vivo effects of U-II on basal hemodynamics and cardiac function in the anesthetized intact rat. Intravenous bolus injection of human U-II resulted in a dose-dependent decrease in mean arterial pressure and left ventricular systolic pressure. Cardiac contractility represented by ±dP/dt was decreased after injection of U-II. However, there was no significant change in heart rate or diastolic pressure. The present study suggests that upregulation of myocardial U-II may contribute to impaired myocardial function in disease conditions such as congestive heart failure.Key words: urotensin-II, rat, infusion, heart.


1994 ◽  
Vol 267 (1) ◽  
pp. H182-H186 ◽  
Author(s):  
T. Nishikimi ◽  
K. Miura ◽  
N. Minamino ◽  
K. Takeuchi ◽  
T. Takeda

To investigate the role of endogenous atrial natriuretic peptide (ANP) in rats with heart failure (HF), we administered HS-142-1 (HS; 3 mg/kg body wt iv), a novel nonpeptide ANP-receptor antagonist, to rats with surgically induced myocardial infarction and sham-operated rats. HF was characterized by a higher left ventricular end-diastolic pressure and higher plasma ANP concentration vs. controls. HS administration significantly reduced the plasma and urinary levels of guanosine 3',5'-cyclic monophosphate in rats with HF [plasma concentration 10.6 +/- 2.6 vs. 2.7 +/- 0.4 nM (P < 0.05); urinary excretion 48 +/- 8 vs. 12 +/- 2 pmol/min (P < 0.05)]. Systemic and renal hemodynamics were unaffected by HS administration. Urine flow (-35%) and urinary sodium excretion (-50%) were significantly decreased after HS only in those rats with HF that had no changes in systemic and renal hemodynamics. These results suggest that the elevated ANP levels in HF do not contribute directly to the maintenance of systemic hemodynamics but rather compensate for the HF mainly via diuresis and natriuresis, achieved by the inhibition of renal tubular reabsorption rather than by renal vasodilatation.


1976 ◽  
Vol 231 (2) ◽  
pp. 495-500 ◽  
Author(s):  
SE Kirkpatrick ◽  
PT Pitlick ◽  
J Naliboff ◽  
WF Friedman

The importance of the Frank-Starling mechanism was evaluated in seven chronically instrumented fetal lambs (128-141 days gestation). Continuous determinations of left ventricular (LV) internal dimensions and pressures were obtained while LV end-diastolic diameter (LVEDD) was reduced by superior vena cava occlusion and increased by infusion of fetal blood into left atrium. A highly significant relationship was found to exist between stroke volume and LV extent of shortening (delta D) (r = + 0.99, P less than 0.001). Altering LVEDD from 10,5 to 13mm or LV end-diastolic pressure from 2.5 to 8 mmHg resulted in a 68% augmentation, in delta D. Spontaneous respiratory efforts resulted in frequent beat-to-beat variations in LVEDD and delta D, which maintained cardiac output constant over a wide range of respiratory rates. Moreover, LV output determined by indicator-dilution techniques remained unchanged over a wide range of spontaneous heart rates (114-180 beats/min) as a result of changes in delta D appropriate to alterations in LVEDD. Thus, changes in resting myocardial fiber length are of fundamental importance in fetal cardiovascular homeostasis and, within physiologic limits, it is quite clear that the Frank-Starling mechanism is operative and effective in the fetal lamb;


1980 ◽  
Vol 239 (4) ◽  
pp. H477-H477 ◽  
Author(s):  
Joseph A. Franciosa ◽  
Richard Heckel ◽  
Catherine Limas ◽  
Jay N. Cohn

To study heart failure from a myocardial lesion, we injected glass beads into the circumflex coronary artery of 11 conscious dogs and followed hemodynamics for 10 mo. Heart rate remained unchanged. Control mean arterial pressure of 112.3 ± 3.0 (SE) mmHg was unchanged at 1 and 3 mo, but rose to 127.2 ± 8.5 to 84.0 ± 7.6 ml . kg-1 . min-1 at 10 mo (P < 0.02), but was unchanged at 1 and 3 mo. Left ventricular end-diastolic pressure (LVEDP) averaged 4.6 ± 0.8 mmHg at control and rose to 11.8 ± 1.4 mmHg at 1 mo and 14.9 ± 2.5 mmHg at 10 mo (both P < 0.01). Systemic vascular resistance rose significantly by 10 mo. The ratio of stroke work to LVEDP fell from 13.1 ± 0.1 at control to 3.8 ± 0.5 by 10 mo (P < 0.01). In this dog model, left ventricular dysfunction is manifest early by increased LVEDP and later by high systemic vascular resistance with low cardiac output, thus suggesting a role of the peripheral circulation in the progression of heart failure.


1996 ◽  
Vol 271 (3) ◽  
pp. R641-R646 ◽  
Author(s):  
D. S. O'Leary ◽  
D. J. Woodbury

The objective of this study was to determine the role of cardiac output in mediating spontaneous fluctuations in mean arterial pressure (MAP) conscious dogs. Dogs were chronically instrumented to monitor MAP and cardiac output. Atrioventricular (AV) block was induced, and left ventricular and right atrial electrodes were implanted. After recovery, MAP was observed for 5 min under two conditions: 1) normal variation in heart rate and cardiac output via triggering the ventricular stimulator with each atrial depolarization (effectively reversing the AV block, AV-linked stimulation) and 2) computer control of ventricular rate to maintain cardiac output constant on a by-beat basis at the same level as observed during normal variations in heart rate and cardiac output. When cardiac output was held constant, large-amplitude, low-frequency oscillations in MAP were readily apparent. Spectral analysis by fast Fourier transform revealed that during constant cardiac output the power observed at low frequencies in the MAP spectrum represented 95.0 +/- 2.7% of the total power compared with 75.5 +/- 4.6% during normal variations in heart rate and cardiac output (P < 0.05). In addition, when cardiac output was held constant, the power observed at higher frequencies markedly decreased from 24.5 +/- 4.6% of total power during AV-linked stimulation to only 5.0 +/- 2.7% of total power during constant cardiac output (P < 0.05). We conclude that low-frequency oscillations in MAP are due to changes in peripheral resistance, whereas a significant amount of high-frequency changes in MAP stems from spontaneous changes in cardiac output.


2018 ◽  
Vol 14 (1) ◽  
pp. 3-8
Author(s):  
Mohammad Ashraf Hossain ◽  
Khurshed Ahmed ◽  
Md Faisal Ibn Kabir ◽  
Md Fakhrul Islam Khaled ◽  
Rakibul H Rashed ◽  
...  

Background: Chronic heart failure (CHF) is the most common and prognostically unfavorable outcome of many diseases of the cardiovascular system. Recent data suggest that beta-blockers are beneficial in patients with CHF. Among β-blocker class of drugs, bisoprolol is a highly selective β1-adrenergic receptor blocker whereas Carvedilol is non-selective. Many large-scale trials have confirmed that both these β-blockers are superior to placebo and other β-blockers. This study was designed to compare the effects of carvedilol and bisoprolol in patients with chronic HF in a single center.Methods: It was a quasi experimental study. A total of 288 cases of heart failure were selected by purposive sampling, from January 2017 to June 2017. Each patient was allocated into either of the two groups, and was continued receiving treatment with either bisoprolol (Group-I) or carvedilol (Group-II). Each patient was evaluated clinically and echocardiographically at the beginning of treatment (baseline) and at the end of 3rd month. Echocardiography was performed to find out change in left ventricular systolic function.Result: After 3 months of treatment, ejection fraction was found higher in the bisoprolol group (42.6 ± 6.5 versus 38.3 ± 4.6%; P < 0.05). Ejection fraction (EF) changes were 8.4% in bisoprolol group and 4.1% in carvedilol group. A significant reduction in left ventricular end-systolic volume (21.9±2.5 in group I versus 14.9±5.7 in group II; P < 0.05) and left ventricular systolic diameter (3.2±0.1 in group I versus 2.3±0.5 in group II; P<0.05) occurred after 3 months of treatment. But no significant differences were observed in left ventricular end-diastolic volume (10.1±3.2 versus 6.1±6.4; P=0.101) and left ventricular diastolic diameter (1.7±0.8 versus 1.3±0.8; P=0.081) between groups. Three months after treatment, heart rate was reduced in the bisoprolol group from 87.7±9 to 74.5±8.1 and carvedilol group from 88.8±9.1 to 80.1±8.7. Differences in heart rate responses between 2 groups were not statistically significant (P=0.113). Assessment of blood pressure three months later of treatment shows, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were improved in both group but difference between two groups were statistically non significant (p>0.05).Conclusion: In this study, bisoprolol was superior to carvedilol in increasing left-ventricular ejection fraction, improving left ventricular end systolic volume and left ventricular end systolic diameter but no significant difference was observed in LV end diastolic volume, LV end diastolic diameter, heart rate and blood pressure.University Heart Journal Vol. 14, No. 1, Jan 2018; 3-8


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Kristin B Andersson ◽  
Alexandra V Finsen ◽  
Ivar Sjaastad ◽  
Yibin Wang ◽  
Ju Chen ◽  
...  

The SERCA2 Ca 2+ ATPase is of central importance for refilling of the sarcoplasmic reticulum (SR) Ca 2+ store and cardiac contractility. Reduced SERCA2 function is associated with heart failure. We hypothesized that loss of SERCA2 would result in immediate severe myocardial contractile dysfunction and death. Transgenic mice were generated with a Cre-loxP strategy in which tamoxifen induces Serca2 ( Atp2a2 ) gene excision in the cardiomyocytes (SERCA2KO) of adult mice. In SERCA2KO mice, SERCA2 protein was rapidly reduced in left ventricular myocardium with a half-life < 3 days. After 4 weeks, SERCA2 protein was reduced to < 5% of control values. In isolated cardiomyocytes, SERCA2a, SERCA2b, SERCA1 and SERCA3 proteins were not detectable. Strikingly, SERCA2KO mice did not present clinical signs of circulatory failure at 4 weeks. Fractional shortening was preserved, and cardiac output was reduced to 80% of control values. The left atrial diameter, lung weight and left ventricular end-diastolic pressure (LVEDP) were slightly increased in SERCA2KO mice compared with controls, and the maximal rates of pressure development and decline in the left ventricle were affected with a prolongation of the ventricular relaxation time. After seven weeks, SERCA2KO mice developed severe congestive heart failure with dilated chambers, elevated LVEDP and pronounced increases in lung and atrial weights. Cardiac output was reduced to 70% of control values. There were no indications of major cardiomyocyte disarray in the myocardium at the 4 or 7 week timepoints. The abundance of Na + ,Ca 2+ exchanger, L-type Ca 2+ channel 1c and alpha2delta1 subunit proteins and Pmca1 mRNA were all increased at 4 and 7 weeks. The expression of calsequestrin protein and Ryr2 mRNA were unchanged. L-type Ca 2+ channel alpha2delta1 subunit and PMCA1 expression were further enhanced at 7 weeks in SERCA2KO mice. Thus, cardiac function is supported in SERCA2KO mice for several weeks despite the near absence of SERCA2 protein. Alterations in the expression of Ca 2+ transporting proteins suggest that Ca 2+ transients are generated over the plasma membrane rather than the SR. However, the adaptations induced by loss of SERCA2 are not sufficient for long-term support of heart function in adult mice.


2011 ◽  
Vol 5 (4) ◽  
Author(s):  
Michael R. Moreno ◽  
Saurabh Biswas ◽  
Lewis D. Harrison ◽  
Guilluame Pernelle ◽  
Matthew W. Miller ◽  
...  

One of the maladaptive changes following a heart attack is an initial decline in pumping capacity, which leads to activation of compensatory mechanisms, and subsequently, a phenomenon known as cardiac or left ventricular remodeling. Evidence suggests that mechanical cues are critical in the progression of congestive heart failure. In order to mediate two important mechanical parameters, cardiac size and cardiac output, we have developed a direct cardiac contact device capable of two actions: (1) adjustable cardiac support to modulate cardiac size and (2) synchronous active assist to modulate cardiac output. In addition, the device was designed to (1) remain in place about the heart without tethering, (2) allow free normal motion of the heart, and (3) provide assist via direct cardiac compression without abnormally inverting the curvature of the heart. The actions and features described above were mapped to particular design solutions and assessed in an acute implantation in an ovine model of acute heart failure (esmolol overdose). A balloon catheter was inflated in the vena cava to reduce preload and determine the end-diastolic pressure-volume relationship with and without passive support. A Millar PV Loop catheter was inserted in the left ventricle to acquire pressure-volume data throughout the experiments. Fluoroscopic imaging was used to investigate effects on cardiac motion. Implementation of the adjustable passive support function of the device successfully modulated the end-diastolic pressure-volume relationship toward normal. The active assist function successfully restored cardiac output and stroke work to healthy baseline levels in the esmolol induced failure model. The device remained in place throughout the experiment and when de-activated, did not inhibit cardiac motion. In this in vivo proof of concept study, we have demonstrated that a single device can be used to provide both passive constraint/support and active assist. Such a device may allow for controlled, disease specific, flexible intervention. Ultimately, it is hypothesized that the combination of support and assist could be used to facilitate cardiac rehabilitation therapy. The principles guiding this approach involve simply creating the conditions under which natural growth and remodeling processes are guided in a therapeutic manner. For example, the passive support function could be incrementally adjusted to gradually reduce the size of the dilated myocardium, while the active assist function can be implemented as necessary to maintain cardiac output and decompress the heart.


Sign in / Sign up

Export Citation Format

Share Document