Effect of human urotensin-II infusion on hemodynamics and cardiac function

2003 ◽  
Vol 81 (2) ◽  
pp. 125-128 ◽  
Author(s):  
Ghada S Hassan ◽  
Fazila Chouiali ◽  
Takayuki Saito ◽  
Fu Hu ◽  
Stephen A Douglas ◽  
...  

Recent studies have shown that the vasoactive peptide urotensin-II (U-II) exerts a wide range of action on the cardiovascular system of various species. In the present study, we determined the in vivo effects of U-II on basal hemodynamics and cardiac function in the anesthetized intact rat. Intravenous bolus injection of human U-II resulted in a dose-dependent decrease in mean arterial pressure and left ventricular systolic pressure. Cardiac contractility represented by ±dP/dt was decreased after injection of U-II. However, there was no significant change in heart rate or diastolic pressure. The present study suggests that upregulation of myocardial U-II may contribute to impaired myocardial function in disease conditions such as congestive heart failure.Key words: urotensin-II, rat, infusion, heart.

2009 ◽  
Vol 37 (06) ◽  
pp. 1059-1068 ◽  
Author(s):  
Min Ge ◽  
Shanfeng Ma ◽  
Liang Tao ◽  
Sudong Guan

The relationship between changes of cardiac function and the gene expressions of two major myocardial skeleton proteins, titin and nebulin, and the effect of gypenosides on these gene expressions in diabetic cardiomyopathy rat were explored in the present study. Forty Sprague-Dawley rats were randomly divided into three groups: control group, diabetic cardiomyopathy group and gypenosides-treated diabetic cardiomyopathy group. The diabetic cardiomyopathy was induced in rats by injecting streptozotocin (STZ, 55 mg/kg) intraperitoneally. Seven weeks after the rats suffered from diabetes, the rats were treated with gypenosides 100 mg/kg per day orally for six weeks in gypenosides-treated group. In the meanwhile, the pure water was given to diabetic cardiomyopathy and the control groups. Subsequently, the cardiac functions, including left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), ± dP/dtmax and t–dP/dmaxt, as well as the mRNA content and proteins of titin and nebulin in myocardium were determined. The results indicated that (1) the diabetic cardiomyopathy rats had decreased LVSP and ± dP/dtmax, increased LVEDP, and prolonged t–dP/dtmax than normal rats; (2) LVSP and ± dP/dtmax in diabetic cardiomyopathy rats treated with gypenosides were significantly higher and LVEDP and t–dP/dtmax were significantly lower than those without giving gypenosides; (3) the mRNA contents and proteins of titin and nebulin in diabetic cardiomyopathy rats were remarkably lower than those in the control rats and gypenosides had no effect on mRNA and protein expression levels of titin and nebulin in diabetic cardiomyopathy rats. We conclude that (1) the cardiac function as well as the mRNA expressions of titin and nebulin decreased in diabetic cardiomyopathy rats; (2) gypenosides secure cardiac muscles and their function from diabetic impairment and these beneficial effects of gypenosides are not by changing the expressions of titin and nebulin.


1975 ◽  
Vol 229 (2) ◽  
pp. 501-505 ◽  
Author(s):  
T Nivatpumin ◽  
T Yipintsoi ◽  
S Penpargkul ◽  
J Scheuer

To study the effects of acute uremia on the inotropic state of the rat heart, we subjected rats to bilateral nephrectomy and studied their hearts in the open chest 24 h later. Uremic rats had significantly higher systolic blood pressure than sham-operated animals. Left ventricular systolic pressure and maximum dP/dt, both during ejection and isovolumic contrations, were higher for any given end-diastolic pressure in hearts of uremic rats than in sham-operated animals. This difference in performance charcteristics was not abolished by doses of propranolol that blocked the heart rate response to isoproterenol. The administration of phenoxybenzamine during the 24 h of uremia abolished the blood pressure rise in uremic rats, but the increased contractile state persisted. Treatment of sham-operated animals with methoxamine to produce the same course of blood pressure as observed in uremic rats was also associated with an increased inotropic state. These results indicate that in the rat, acute uremia is associated with an increased inotropic state that is not mediated by beta-adrenergic mechanisms. The systolic hypertension of acute uremia is not the major cause of the increased contractility, although systolic hypertension without uremia can mimic the performance characteristics found in hearts of uremic rats.


1991 ◽  
Vol 260 (3) ◽  
pp. H909-H916 ◽  
Author(s):  
J. Tong ◽  
P. K. Ganguly ◽  
P. K. Singal

Changes in myocardial norepinephrine (NE) levels, turnover, uptake, and release in rats were examined at two stages of cardiac dysfunction induced by adriamycin (ADR) given intraperitoneally in six equal doses over a period of 2 wk for a cumulative dose of 15 mg/kg. At 3 wk posttreatment, ADR-treated animals showed no changes in left ventricular systolic pressure (LVSP), aortic systolic pressure (ASP), and aortic diastolic pressure (ADP) but left ventricular end-diastolic pressure (LVEDP) was significantly higher. At 6 wk posttreatment, LVSP, ASP, and ADP were significantly lower and LVEDP remained elevated. Animals in both ADR-treated groups showed signs of congestive heart failure as indicated by ascites, congestive liver, and elevated LVEDP. Structural changes typical of ADR cardiomyopathy were more pronounced in the 6-wk group. In vivo hemodynamic as well as in vitro muscle function response to different concentrations of epinephrine was depressed in its duration as well as extent in both 3- and 6-wk ADR-treated groups. Myocardial NE levels were increased in the 3-wk group but were depressed in the 6-wk group. NE turnover was faster in both 3- and 6-wk ADR groups, uptake was increased only in the 6-wk group, and release was unchanged. These data show increased cardiac sympathetic tone at both stages of ADR-induced congestive heart failure.


1985 ◽  
Vol 59 (3) ◽  
pp. 890-897 ◽  
Author(s):  
G. E. Billman ◽  
P. J. Schwartz ◽  
J. P. Gagnol ◽  
H. L. Stone

The hemodynamic response to submaximal exercise was investigated in 38 mongrel dogs with healed anterior wall myocardial infarctions. The dogs were chronically instrumented to measure heart rate (HR), left ventricular pressure (LVP), LVP rate of change, and coronary blood flow. A 2 min coronary occlusion was initiated during the last minute of an exercise stress test and continued for 1 min after cessation of exercise. Nineteen dogs had ventricular fibrillation (susceptible) while 19 animals did not (resistant) during this test. The cardiac response to submaximal exercise was markedly different between the two groups. The susceptible dogs exhibited a significantly higher HR and left ventricular end-diastolic pressure (LVEDP) but a significantly lower left ventricular systolic pressure (LVSP) in response to exercise than did the resistant animals. (For example, response to 6.4 kph at 8% grade; HR, susceptible 201.4 +/- 5.1 beats/min vs. resistant 176.2 +/- 5.6 beats/min; LVEDP, susceptible 19.4 +/- 1.1 mmHg vs. resistant 12.3 +/- 1.7 mmHg; LVSP, susceptible 136.9 +/- 7.9 mmHg vs. resistant 154.6 +/- 9.8 mmHg.) beta-Adrenergic receptor blockade with propranolol reduced the difference noted in the HR response but exacerbated the LVP differences (response to 6.4 kph at 8% grade; HR, susceptible 163.4 +/- 4.7 mmHg vs. resistant 150.3 +/- 6.4 mmHg; LVEDP susceptible 28.4 +/- 2.1 mmHg vs. resistant 19.6 +/- 3.0 mmHg; LVSP, susceptible 122.2 +/- 8.1 mmHg vs. resistant 142.8 +/- 10.7 mmHg). These data indicate that the animals particularly vulnerable to ventricular fibrillation also exhibit a greater degree of left ventricular dysfunction and an increased sympathetic efferent activity.


1984 ◽  
Vol 247 (3) ◽  
pp. H371-H379 ◽  
Author(s):  
P. A. Anderson ◽  
K. L. Glick ◽  
A. Manring ◽  
C. Crenshaw

Developmental changes in contractility were sought in the fetal and postnatal sheep heart by using postextrasystolic potentiation and force, pressure, and wall-motion measures. Two different preparations were used, isolated myocardium and the chronically instrumented lamb. In the isolated muscle, the following increased significantly with age: force of contraction, the maximum rate of rise of force, and postextrasystolic potentiation. In the intact heart prior to birth [period of study, 20 +/- 4 (SD) days] heart rate (HR) fell significantly, and the following increased significantly: postextrasystolic potentiation [measured with the maximum rate of rise of left ventricular (LV) pressure (Pmax)], LV peak systolic pressure (LVP), end-diastolic dimension (EDD), end-systolic dimension (ESD), and aortic diastolic pressure. After birth, LVP, Pmax, HR, LVEDP, EDD, and ESD increased and postextrasystolic potentiation fell. The latter fall was not found in vitro and probably demonstrates a transient change in contractility, related to hormonal or neural stimulation. Over the subsequent postnatal days (6-122 days), HR fell while potentiation, EDD, and ESD increased significantly. Both in vitro and in vivo, the overall increase in postextrasystolic potentiation demonstrates a similar long-term change in contractility. The similarity of this change to that induced by mild hypertrophy suggests that development and mild hypertrophy alter myocardial contractility through a common mechanism.


1982 ◽  
Vol 242 (2) ◽  
pp. H240-H244 ◽  
Author(s):  
H. N. Sabbah ◽  
P. D. Stein

The effects of acute ischemia on regional intramyocardial pressure were studied in eight open-chest dogs. Aortic, left ventricular, subepicardial, and subendocardial pressures were measured with catheter-tip micromanometers. During the control period subendocardial pressure during systole (180 +/- 13 mmHg; mean +/- SE) was higher than left ventricular intracavitary pressure (137 +/- 9 mmHg; P less than 0.001). Subepicardial pressure during systole was lower (95 +/- 6 mmHg; P less than 0.001). Acute ischemia caused a reduction of subendocardial pressure during systole to levels below left ventricular systolic pressure (92 +/- 7 mmHg vs. 116 +/- 6 mmHg; P less than 0.01). Ischemia also caused a reduction of systolic subepicardial pressure to 67 +/- 2 mmHg (P less than 0.001). After reperfusion all pressures returned nearly to control values. During diastole subendocardial pressure during the control period (13 +/- 1 mmHg) was high than left ventricular end-diastolic pressure (6 +/- 1 mmHg; P less than 0.001). Subepicardial pressure during diastole (29 +/- 2 mmHg) was higher than subendocardial pressure and left ventricular end-diastolic pressure (P less than 0.001). Acute ischemia had little or no effect on subendocardial pressure during diastole, whereas it caused a reduction of subepicardial diastolic pressure to 16 +/- 1 mmHg (P less than 0.001). Reperfusion of the ischemic region caused a return of all diastolic pressures nearly to control values. These observations indicate that coronary extravascular resistance is affected by ischemia and that the most prominent effects are in the subendocardium during systole and in the subepicardium during diastole.


1978 ◽  
Vol 235 (1) ◽  
pp. H64-H71 ◽  
Author(s):  
F. J. Sestier ◽  
R. R. Mildenberger ◽  
G. A. Klassen

Spatial heterogeneity, the region-to-region variation in flow at an instant, and temporal heterogeneity, the time variation of flow in a small region of myocardium, were investigated with radioactive labeled microspheres in 111 regions of left ventricular myocardium. The error of the method was measured by simultaneously injecting four differently labeled microspheres (15 +/- 5 (SD) micron). The coefficient of variation (CV) was 6.5 +/- 1.0%. Spatial variation with autoregulation intact was 21.7 +/- 1.4% (CV); with autoregulation abolished and low perfusion pressure, it was 34.3 +/- 3.7%; and with normal perfusion pressure, 30.8 +/- 6.4% (differences not significantly). This degree of variation was similar in the entire left ventricle and its layers. Forces which tended to cause vessel closure (low perfusion pressure, ventricular systolic pressure, and ventricular diastolic pressure) tended to increase CV. Temporal heterogeneity as measured by 20-s intervals between microsphere injections was 11.1 +/- 1.0% (CV) with autoregulation, 9.8 +/- 1.3% (P less than 0.05) with autoregulation abolished, and 8.4 +/- 0.8% (P less than 0.05) when perfusion pressure was restored. A periodicity of flow cycles of 30-90 s was suggested by the data. These results suggest that spatial heterogeneity is less influenced by autoregulation than by hydraulic considerations, whereas temporal heterogeneity is a component of autoregulation.


1986 ◽  
Vol 251 (2) ◽  
pp. H364-H373 ◽  
Author(s):  
R. D. Goldfarb ◽  
L. M. Nightingale ◽  
P. Kish ◽  
P. B. Weber ◽  
D. J. Loegering

Our previous studies suggested that after a median lethal dose (LD50) of endotoxin, cardiac contractility was depressed in nonsurviving dogs. The canine cardiovascular system is unlike humans in that dogs have a hepatic vein sphincter that is susceptible to adrenergic stimulation capable of raising hepatic and splanchnic venous pressures. We retested the hypothesis that lethality after endotoxin administration is associated with cardiac contractile depression in pigs, because the hepatic circulation in this species is similar to that of humans. We compared cardiac mechanical function of pigs administered a high dose (250 micrograms/kg) or a low dose (100 micrograms/kg) endotoxin by use of the slope of the end-systolic pressure-diameter relationship (ESPDR) as well as other measurements of cardiac performance. In all the pigs administered a high dose, ESPDR demonstrated a marked, time-dependent depression, whereas we observed no significant ESPDR changes after low endotoxin doses. The other cardiodynamic variables were uninterpretable, due to the significant changes in heart rate, end-diastolic diameter (preload), and aortic diastolic pressure (afterload). Plasma myocardial depressant factor activity accumulated in all endotoxin-administered animals, tending to be greater in the high-dose group. In this group, both subendocardial blood flow and global function were depressed, whereas pigs administered the low dose of endotoxin demonstrated slight, but nonsignificant, increases in flow and function. These observations indicate that myocardial contractile depression is associated with a lethal outcome to high doses of endotoxin. One possible mechanism for this loss of contractile function may be a relative hypoperfusion of the subendocardium.


1990 ◽  
Vol 68 (3) ◽  
pp. 455-461
Author(s):  
M. Allam ◽  
C. Saunier ◽  
A. Sautegeau ◽  
D. Hartemann

The explanation for the increased frequency of troubles with digoxin therapy in patients with chronic pulmonary diseases is debated. The reported effects of hypoxia in vivo on myocardial levels of digoxin are contradictory, and there have been few studies on the effects of hypercapnia. In the past, it has been shown in rat myocardial tissue at rest in vitro that hypoxia decreased and hypercapnia acidosis increased the digoxin uptake. We performed a new study in vitro in an isolated beating rat heart perfused at constant flow (37 °C) and stimulated at a constant frequency (6 Hz). The performances were recorded with an intraventricular balloon equipped with a tip-manometer catheter. The action of digoxin was studied by recording systolic pressure (PS) and diastolic pressure (PD), the left ventricular developed pressure (LVDP = PS − PD), the (dP/dt)max, and the ratio (dP/dt)max/PS. First, the heart was perfused for 30 min with a modified Tyrode's solution perfusate aerated with carbogen (pH = 7.40; [Formula: see text]; [Formula: see text]) (1 mmHg = 133.32 Pa). Various parameters of contractions were recorded (initial control values). Then the heart was perfused for 15 min with Tyrode's solution aerated either with a hypoxic gas mixture (pH = 7.41; [Formula: see text]; [Formula: see text]), a hypercapnic gas mixture (pH = 7.08; [Formula: see text]; [Formula: see text]), or a hypoxic–hypercapnic gas mixture (pH = 7.09; [Formula: see text]; [Formula: see text]). Control hearts were continuously perfused with Tyrode's solution aerated with carbogen. During heart perfusion with hypercapnic, hypoxic, or hypoxic–hypercapnic Tyrode's solution, a decrease in LVDP and (dP/dt)max was observed. Finally, the heart was perfused with the same Tyrode's solution plus 1.75 × 10−5 M digoxin. The increase in myocardial contractility produced by digoxin was enhanced by hypercapnia and abolished by hypoxia. The addition of hypercapnia to hypoxia in Tyrode's solution seems to enhance the depressor action of the hypoxia.Key words: isolated heart, digoxin, hypoxia, hypercapnia, myocardial contractility.


1988 ◽  
Vol 255 (3) ◽  
pp. H679-H684
Author(s):  
J. D. Schipke ◽  
J. Alexander ◽  
Y. Harasawa ◽  
R. Schulz ◽  
D. Burkhoff

We predicted the shape of the end-systolic pressure-thickness relationship (ESPTR) by modeling the left ventricle as thick-walled sphere. To test the validity of the predicted relationships, we then measured the ESPTR over wide volume ranges in seven isolated blood-perfused canine hearts. Both simulation and experiments demonstrated that the ESPTR is curvilinear. However, within a physiological left ventricular systolic pressure range (80–150 mmHg), the ESPTR was described reasonably well by a straight line. Within that pressure range, changes in left ventricular contractile state, assessed by slope changes of the end-systolic pressure-volume relationship, were associated with almost parallel shifts in the ESPTR. In contrast, in a low pressure range (less than 80 mmHg), contractility changes were associated with slope changes of the ESPTR. We conclude that, in general, there are limitations in the application of ESPTR for assessing left ventricular contractility, but if the limitations are recognized and accounted for, then the ESPTR may be useful for assessing contractility changes in vivo.


Sign in / Sign up

Export Citation Format

Share Document