scholarly journals Abnormal sympathetic neural recruitment patterns and hemodynamic responses to cold pressor test in women with posttraumatic stress disorder

2020 ◽  
Vol 318 (5) ◽  
pp. H1198-H1207 ◽  
Author(s):  
Jeung-Ki Yoo ◽  
Mark B. Badrov ◽  
Mu Huang ◽  
Ryan A. Bain ◽  
Raymond P. Dorn ◽  
...  

The novel findings of the present study are that women with posttraumatic stress disorder (PTSD) have an augmented pressor response to the sympathoexcitatory stimulus of a cold pressor test (CPT) compared with healthy control subjects. Although integrated muscle sympathetic nerve activity burst responses were not significantly different between groups, total sympathetic action potential discharge in response to the CPT was markedly elevated in women with PTSD exhibiting increased firing of low-threshold axons as well as the recruitment of latent subpopulations of larger-sized axons that are otherwise silent at baseline. Aberrant autonomic circulatory control in response to sympathoexcitatory stimulus may in part explain the propensity toward developing hypertension and cardiovascular disease in this population.

2020 ◽  
Vol 318 (1) ◽  
pp. H49-H58 ◽  
Author(s):  
Jeung-Ki Yoo ◽  
Mark B. Badrov ◽  
Rosemary S. Parker ◽  
Elizabeth H. Anderson ◽  
Jessica L. Wiblin ◽  
...  

Posttraumatic stress disorder (PTSD) is a psychiatric illness that is more prevalent in women, and accumulating evidence suggests a link between PTSD and future development of cardiovascular disease. The underlying mechanisms are unclear, but augmented sympathetic reactivity to daily stressors may be involved. We measured muscle sympathetic nerve activity (MSNA), blood pressure (BP), and heart rate responses in 14 women with PTSD and 14 healthy women (controls) during static handgrip (SHG) exercise to fatigue at 40% of maximal voluntary contraction (MVC). Two minutes of postexercise circulatory arrest (PECA) was followed immediately after SHG to fatigue. MVC and the time to fatigue during SHG did not differ between groups (both P > 0.05). At the first 30 s of SHG, women with PTSD showed augmented sympathetic neural [mean ± SD, ∆MSNA burst frequency (BF): 5 ± 4 vs. 2 ± 3 bursts/30 s, P = 0.02 and ∆MSNA total activity (TA): 82 ± 58 vs. 25 ± 38 arbitrary units/30 s, P = 0.004] and pressor (∆systolic BP: 10 ± 5 vs. 4 ± 3 mmHg, P = 0.003) responses compared with controls. However, MSNA and BP responses at fatigue and during PECA were not different between groups. More interestingly, the augmented initial neural and pressor responses to SHG were associated with greater awake systolic BP variability during ambulation in women with PTSD (MSNA BF: r = 0.55, MSNA TA: r = 0.62, and SBP: r = 0.69, all P < 0.05). These results suggest that early onset exercise pressor response in women with PTSD may be attributed to enhanced mechano- rather than metaboreflexes, which might contribute to the mechanisms underlying the link between PTSD and cardiovascular risk. NEW & NOTEWORTHY The novel findings of the current study are that women with posttraumatic stress disorder (PTSD) exhibited augmented sympathetic neural and pressor responses at the first 30 s of submaximal isometric muscle contraction. More interestingly, exaggerated neurocirculatory responses at the onset of muscle contraction were associated with greater ambulatory awake systolic blood pressure fluctuations in women with PTSD. Our findings expand the knowledge on the physiological mechanisms that perhaps contribute to increased risk of cardiovascular disease in such a population.


Hypertension ◽  
1987 ◽  
Vol 9 (5) ◽  
pp. 429-436 ◽  
Author(s):  
R G Victor ◽  
W N Leimbach ◽  
D R Seals ◽  
B G Wallin ◽  
A L Mark

2020 ◽  
Vol 319 (3) ◽  
pp. R288-R295
Author(s):  
M. L. Keller-Ross ◽  
H. A. Cunningham ◽  
J. R. Carter

Prior longitudinal work suggests that blood pressure (BP) reactivity to the cold pressor test (CPT) helps predict hypertension; yet the impact of age and sex on hemodynamic and neural responsiveness to CPT remains equivocal. Forty-three young (21 ± 1yr, means ± SE) men (YM, n = 20) and women (YW, n = 23) and 16 older (60 ± 1yr) men (OM, n = 9) and women (OW, n = 7) participated in an experimental visit where continuous BP (finger plethysmography) and muscle sympathetic nerve activity (MSNA; microneurography) were recorded during a 3- to 5-min baseline and 2-min CPT. Baseline mean arterial pressure (MAP) was greater in OM than in YM (92 ± 4 vs. 77 ± 1 mmHg, P < 0.01), but similar in women ( P = 0.12). Baseline MSNA incidence was greater in OM [69 ± 6 bursts/100 heartbeats (hb)] than in OW (44 ± 7 bursts/100 hb, P = 0.02) and lower in young adults (YM: 17 ± 3 vs. YW: 16 ± 2 bursts/100 hb, P < 0.01), but similar across the sexes ( P = 0.83). However, when exposed to the CPT, MSNA increased more rapidly in OW (Δ43 ± 6 bursts/100 hb; group × time, P = 0.01) compared with OM (Δ15 ± 3 bursts/100 hb) but was not different between YW (Δ30 ± 3 bursts/100 hb) and YM (Δ33 ± 4 bursts/100 hb, P = 1.0). There were no differences in MAP with CPT between groups (group × time, P = 0.33). These findings suggest that OW demonstrate a more rapid initial rise in MSNA responsiveness to a CPT compared with OM. This greater sympathetic reactivity in OW may be a contributing mechanism to the increased hypertension risk in postmenopausal women.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Elizabeth A. Gideon ◽  
Molly M. Ploof ◽  
Yi Zhang ◽  
Morgan C. O'Leary ◽  
James R. Sackett ◽  
...  

2020 ◽  
Vol 129 (5) ◽  
pp. 1203-1213
Author(s):  
Gabrielle A. Dillon ◽  
Zachary S. Lichter ◽  
Lacy M. Alexander ◽  
Lauro C. Vianna ◽  
Jing Wang ◽  
...  

The magnitude of the increases in blood pressure and muscle sympathetic nerve activity in response to sympathoexcitatory stimuli such as static handgrip, postexercise ischemia, and the cold pressor test are commonly used to assess neurocardiovascular responsiveness. However, limited studies have comprehensively examined the reproducibility of these responses. We demonstrate that the reproducibility of the pressor response to these perturbations was very good within an individual, whereas the reproducibility of the MSNA response was less consistent.


2018 ◽  
Vol 315 (6) ◽  
pp. R1272-R1280 ◽  
Author(s):  
Ida T. Fonkoue ◽  
Seth D. Norrholm ◽  
Paul J. Marvar ◽  
Yunxiao Li ◽  
Melanie L. Kankam ◽  
...  

Posttraumatic stress disorder (PTSD) is characterized by increased sympathetic nervous system (SNS) activity, blunted parasympathetic nervous system (PNS) activity, and impaired baroreflex sensitivity (BRS), which contribute to accelerated cardiovascular disease. Patients with PTSD also have chronic stress-related elevations in resting blood pressure (BP), often in the prehypertensive range; yet, it is unclear if elevated resting blood pressure (ERBP) augments these autonomic derangements in PTSD. We hypothesized that compared with normotensive PTSD (N-PTSD), those with ERBP (E-PTSD) have further increased SNS, decreased PNS activity, and impaired BRS at rest and exaggerated SNS reactivity, PNS withdrawal, and pressor responses during stress. In 16 E-PTSD and 17 matched N-PTSD, we measured continuous BP, ECG, muscle sympathetic nerve activity (MSNA), and heart rate variability (HRV) markers reflecting cardiac PNS activity [standard deviation of R-R intervals (SDNN), root mean square of differences in successive R-R intervals (RMSSD), and high frequency power (HF)] during 5 min of rest and 3 min of mental arithmetic. Resting MSNA ( P = 0.943), sympathetic BRS ( P = 0.189), and cardiovagal BRS ( P = 0.332) were similar between groups. However, baseline SDNN (56 ± 6 vs. 78 ± 8 ms, P = 0.019), RMSSD (39 ± 6 vs. 63 ± 9 ms, P = 0.018), and HF (378 ± 103 vs. 693 ± 92 ms2, P = 0.015) were lower in E-PTSD versus N-PTSD. During mental stress, the systolic blood pressure response ( P = 0.011) was augmented in E-PTSD. Although MSNA reactivity was not different ( P > 0.05), the E-PTSD group had an exaggerated reduction in HRV during mental stress ( P < 0.05). PTSD with ERBP have attenuated resting cardiac PNS activity, coupled with exaggerated BP reactivity and PNS withdrawal during stress.


Sign in / Sign up

Export Citation Format

Share Document